期刊文献+

非饱和多孔介质非线性有限元分析的一致性算法 被引量:4

A Self Consistent Algorithm for Non-linear Finite Element Analysis of Unsaturated Porous Media
下载PDF
导出
摘要 在文[1]工作的基础上,对非饱和多孔材料非线性问题进行分析,给出分析的本构模型,模型中考虑了毛吸压力的影响。给出问题分析的求解技术与算法策略,在此基础上,为保证迭代算法的收敛性,文中给出适合于广义塑性本构模型分析的一致性算法与一致性切线刚度矩阵。给出的数值算例证实了理论与算法的正确与有效性。 Based on the work shown in [1], the nonlinear analysis of unsaturated porous media was given in this paper. The constitutive relations of the materials, where the capillary pressure was considered, were presented. Furthermore, the consistent algorithm and consistent stiffness matrix for generalized plasticity constitutive model in analysis of partially saturated porous media were put forward to make the convergence process of iteration in a fast way. Finally, the numerical examples are given to demonstrate the validity and efficiency of the model and algorithm proposed.
作者 张洪武
机构地区 大连理工大学
出处 《力学季刊》 CSCD 北大核心 2002年第2期173-181,共9页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(50178016 19872016 19832010)
关键词 非饱和多孔介质 本构方程 有限元法 一致性算法 非线性 土力学 : unsaturated porous media constitutive equation finite element method self consistent algorithm
  • 相关文献

参考文献1

二级参考文献20

  • 1[1]Biot M A. General theory of three-dimensional consolidation. J Appl Phys, 1941, 12: 155-164
  • 2[2]Biot M A. Theory of propagation of elastic waves in fluid saturated porous solid. J Acoust Soc America, 1956, 28: 168-191
  • 3[3]Zienkiewicz O C, Chan A H C, Pastor M, Paul D K, Shiomi T. Static and dynamic behaviour of soils: a rational approach to quantitative solutions. Ⅰ-Fully Saturated Problems, Proc Royal Soc London, 1990, A 429:285-309
  • 4[4]Ehlers W, Volk W. On shear band localisation phenomena of fluid-saturated granular elasto-plastic porous solid materials accounting for fluid viscosity and micropolar solid rotation. Mechanics of Cohesive-Frictional Materials Structures, 1997, 2(4) :301-302
  • 5[5]Zienkiewicz O C, Xie Y M, Schrefler B A, Ledesma A, Bicanic N. Static and dynamic behaviour of soils: a rational approach to quantitative solutions, part Ⅱ: semi-saturated problems. Proc R Soc London, 1990, A429:311-321
  • 6[6]Li X, Zienkiewicz O C, Xie Y M. A numerical model for immiscible two-phase fluid flow in a porous medium and its time domain solution. Int J Numeri Meths Engng, 1990, 30:1195-1212
  • 7[7]Schrefler B A, Simoni L, Li X, Zienkiewicz O C. Mechnics of partially saturated porous media. In Desai C S and Gioda G(eds), Numerical Methods and Constitutive Modeling in Geomechanicsm Spring-Verlag, Wien, 1990, 169-209
  • 8[8]Zienkiewicz O C, Schrefler B A, Simoni L, Xie Y M, Zhan X Y. Two and three phase behaviour in soil dynamics. In wriggers P and Wagner W(eds), Spring-Verlag, Berlin, 1991, 103-136
  • 9[9]Meroi E A, Schrefler B A, Zienkiewicz O C. Large strain static and dynamic semisaturated soil behaviour. Int Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19 : 81-106
  • 10[10]Morel-Seytoux H J, Billica J A. A two-phase numerical model for prediction of infiltration: applications to a Semi-infinite column. water resour Res, 1985, 21: 607-615

共引文献5

同被引文献46

  • 1张玉军.一种模拟热—水—应力耦合作用的节理单元及数值分析[J].岩土工程学报,2005,27(3):270-274. 被引量:16
  • 2石根华.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997..
  • 3Zienkiewicz O C,Chan A H C,Pastor M,Paul D K,Shiomi T.Static and dynamic behaviour of soils:A rational approach to quantitative solutions[C].I-fully sSaturated problems,Proc.Royal Soc.London,1990,A 429:285~309.
  • 4Ehlers W,Volk W.On shear band localisation phenomena of fluid-saturated granular elasto-plastic porous solid materials accounting for fluid viscosity and micropolar solid rotation[J].Mechanics of Cohesive-Frictional Materials Structures,1997,2(4):301~320.
  • 5Biot M A.General theory of three-dimensional consolidation[J].Journal of Applied Physics,1941,12:155~164.
  • 6Biot M A.Theory of propagation of elastic waves in fluid saturated porous media[J].Journal of Acoustical of Society of America,1956,28:168~191.
  • 7Babuska I.Error bounds for finite element methods[J].Numerische Mathematik,1971,16:322~333.
  • 8Babuska I.The finite element method with Lagrange multipliers[J].Numerische Mathematik,1973,20:179~ 192.
  • 9Brezzi F.On the existence,uniqueness and approximation of saddle point problem from Lagrange multipliers[J].RAIRD,1974,8:129~151.
  • 10Taylor R L,Simo J C,Zienkiewicz O C,Chan A H C.The patch test:A condition for assessing FEM convergence[J].International Journal for Numerical Methods in Engineering,1986,22:39~62.

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部