期刊文献+

交错网格下的浅水方程高分辨Gauss型格式 被引量:1

A high resolution Gauss scheme with staggered grid for shallow water equation
下载PDF
导出
摘要 在交错网格上 ,基于高精度的Gauss积分公式 ,针对浅水波方程设计了对模拟涌波具有高分辨率的完全二阶精度的数值计算格式。由于采用了交错网格 ,差分格式不需要解Riemann问题 ,因此本文格式具有计算简单、工作量少、编程简便等特点。另外 ,在一维单个方程时 ,本文格式在CFL(CourantFriedrichLewy)条件限制下为TVD(TotalVariationDiminishing)格式 ,在二维和三维情况下格式具有MmB(MaximumandMinimumBoundsPreserving)性质。利用国家高性能计算中心 (合肥 )的曙光 1 0 0 0型分布存储大规模并行机 ,对在交错网格下所构造的求解浅水方程的高分辨差分格式进行了并行实现 。 Based on the high accurate Gauss integral formula, a high resolution and totally two orders accurate scheme is designed by using a staggered grid for shallow water equation The difference scheme does not face to solve Riemann problem due to use the staggered grid, so the difference scheme has the specialty of simple computing and convenient programming By the way, in one dimensional scalar equation, the difference scheme is TVD (Total Variation Diminishing scheme) with CFL(Courant Friedrich Lewy)condition In two and three dimensional cases, the scheme has MmB (Maximum and Minimum Bounds Preserving) property With the Shuguang 1000 distribution storage vast scale parallel computer at the computing center of China, the high resolution difference scheme for solving shallow water equation with the staggered grid is used to numerical simulate several typical program, the computed results are satisfy
出处 《水科学进展》 EI CAS CSCD 北大核心 2002年第4期403-408,共6页 Advances in Water Science
基金 国家自然科学基金项目 (5 99790 0 4) 高等学校博士学科点专项科研基金资助项目 (1 9990 2 941 0 ) 国家高性能计算基金项目 (0 0 2 1 7)
关键词 交错网格 浅水方程 差分格式 Gauss积分式 staggered grid shallow water equation difference scheme Gauss integral formula
  • 相关文献

参考文献6

二级参考文献15

  • 1谭维炎,胡四一,韩曾萃,潘存鸿,楼越平,毛喜中.钱塘江口涌潮的二维数值模拟[J].水科学进展,1995,6(2):83-93. 被引量:32
  • 2王如云.浅水涌波生成与传播的数值模拟,博士论文[M].中国科学院海洋研究所,1998..
  • 3王如云 杨晓华.坐标系变换下守恒量形式上保持的一个公式[J].东南大学学报,1999,29(3):20-21.
  • 4[1]Harten A. High resolution schemes for hyperbolic conservation laws[J]. J. Comp. Phys. , 1983,49:357~393.
  • 5[2]Harten A. On a class of high resolution total-variation-stable finite-difference schemes [J]. SIAM.Numer. Anal., 1984,21:1~23.
  • 6[3]Engquist B & Osher S. One-Sided Difference Approximations for Nonlinear Conservation Laws [J].Math. of Comp. , 1981,36(154):321~351.
  • 7[4]Yee H C, etc. Implicit Total Diminishing (TVD) Schemes for Steady-State Calculations[J]. J. of Comp.Phys., 1985,57:327~360.
  • 8[5]Nessyahu H, Tadmor E. Non-oscillatory Central Differencing for Hyperbolic Conservation Laws[J]. J. of Comp. Phys., 1990,87:408~463.
  • 9[6]Jiang G-S, etc. High-resolution Nonoscillatory Central Schemes with Nonstaggered Grids for Hyperbolic Conservation Laws[J]. SIAM Numer Anal., 1998,35(6):2147~2168.
  • 10[7]Jiang G-S., Tadmor E. Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws[J]. SIAM J. Sci. Comput., 1998,19(6):1892~1917.

共引文献10

同被引文献4

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部