期刊文献+

基于压缩传感的多样本目标跟踪算法

Multiple Instance Target Tracking Algorithm Based on Compressed Sense
下载PDF
导出
摘要 针对实时目标跟踪会产生跟踪不稳定、易漂移、被遮挡就丢失的问题,提出改进的多样本跟踪算法。在压缩传感实时跟踪中,通过增加随机测量矩阵产生新的压缩感知特征,融合多个正负样本。结合boosting学习方法更新特征权值并改进置信图估计,解决目标漂移和丢失问题。实验结果表明,该方法在目标运动、纹理和环境显著变化以及被部分遮挡的情况下,跟踪的鲁棒性依旧很高,能达到稳定、实时的目标跟踪。 Aiming at the problems of unstable tracking , easy to drift , obscured loss , which are produced in real-time target track-ing, we propose an improved tracking algorithm for multiple instances .In the compressed sensing and real-time tracking, by adding random measurement matrix to produce new features , multiple positive and negative instances are integrated .By combi-ning with the boosting learning method to update the feature weights and improve the confidence map estimation , we solve the problems of target drift and loss .Experimental results show that the proposed algorithm achieves better robustness and stable real -time tracking when the target moves quickly , or in conditions that the textures and lightings change seriously , as well as it is par-tially covered .
作者 陈茜 狄岚
出处 《计算机与现代化》 2014年第7期58-62,67,共6页 Computer and Modernization
基金 江苏省六大人才高峰项目(DZXX-028) 江南大学教师卓越工程项目(JGC2013145)
关键词 目标跟踪 压缩传感 多样本 实时跟踪 漂移 目标遮挡 target tracking compressive sensing multiple instance real-time tracking drift target occlusion
  • 相关文献

参考文献19

  • 1马俊.基于图像和深度信息融合的目标跟踪[J].计算机与现代化,2013(9):91-94. 被引量:2
  • 2徐培智,徐贵力,王彪,郭瑞鹏,田裕鹏,叶永强.基于立体视觉的非合作目标位姿测量[J].计算机与现代化,2013(8):85-91. 被引量:9
  • 3Dee H, Velastin S.How close are we to solving the problem of automated visual surveillance?[J].Machine Vision and Applications, 2008,19(5-6):329-343.
  • 4刘国营,陈秀宏,庄甘霖.检测识别跟踪分离的在线多样本视频目标跟踪[J].计算机工程,2012,38(23):194-197. 被引量:1
  • 5Grabner H, Bischof H.On-line boosting and vision[C]// Proceedings of the 2006 IEEE Conference on Computer Vision and Pattern Recognition.2006,1:260-267.
  • 6Stalder S, Grabner H, Van Gool L.Beyond semi-supervised tracking: Tracking should be as simple as detection, but not simpler than recognition[C]// Proceedings of the 12th IEEE International Conference on Computer Vision Workshops.2009:1409-1416.
  • 7Li Hanxi, Shen Chunhua, Shi Qinfeng.Real-time visual tracking using compressive sensing[C]// Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition.2011:1305-1312.
  • 8Mei Xue, Ling Haibin.Robust visual tracking and vehicle classification via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,33(11):2259-2272.
  • 9Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory, 2006,52(4):1289-1306.
  • 10Zhang Kaihua, Zhang Lei, Yang Ming-Hsuan.Real-time compressive tracking[C]// Proceedings of the 13th European Conference on Computer Vision.2012:866-879.

二级参考文献120

共引文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部