期刊文献+

一类射影簇的数值有效收缩态射的结构

Structure of a Nef Contraction on Projective Varieties
下载PDF
导出
摘要 设X是n维非奇异射影簇,L是X上的丰富线丛,KX是X的典范丛,f:X→Y是以为KX+mL支撑除子的收缩态射(m≥1),F是f的任一纤维.文中证明了,如果dimF=m,那么F同构于m维射影空间Pm或者m+1维射影空间Pm+1中的超二次曲面Qm. Letbe a nonsingular projective variety of dimension, be an ample line bundle overand be the canonical bundle over. Letbe the nef contraction fromtowith supporting divisor for some, be any generic fiber of. if, dimF=m then F is isomorphic to projective space or hyperquadrie in.
作者 邓芳芳
机构地区 广东开放大学
出处 《广东技术师范学院学报》 2014年第7期10-11,15,共3页 Journal of Guangdong Polytechnic Normal University
关键词 射影簇 丰富线丛 收缩态射 纤维 projective variety ample line bundle contraction morphism fiber
  • 相关文献

参考文献9

  • 1MORIS. Flip Theorem and the Existence of Minimal Models for 3-Folds [J]. J Amer Math Soc,1988,1: 117-253.
  • 2MORIS. Threefolds whose canonical bundles are not numerically effective [ J ]. Ann Math, 1982,116:133-176.
  • 3BELTRAMENTI M, SOMMESE J. The Adjunction The- ory of Complex Projecti Eve Varieties [M]. Berlin: Walter de Gruyter, 1995.
  • 4KAWAMATA Y, MATSUDA K, MATSUKI K. Introduc- tion to the minimal model problem [ J]. Advan Stud Pure Math.2002, 10: 283-360.
  • 5DEBARRE O. Higher-Dimensional Algebraic Geometry [M]. New York: Springer-Verlag, 2001.
  • 6WISNIEWSKI J. Length of extremal rays and general- ized adjunction[J ]. Math Z, 1989,200:409-427.
  • 7ANDREA'Iq'A M. Contractions of gorenstein polarized varieties with high nef value [J]. Math Ann, 1994, 300:669-679.
  • 8GRIFFITHS P, HARRIS J. Principles of algebraic ge- ometry [ M ] .Wiley, New York, 1978.
  • 9C HO K, MIYAOKA Y, BARRON S. Characterizations of projective space and applications to complex symplectic manifolds[ J]. Adv Stud Pure Math,2002,35:1-88.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部