期刊文献+

采用奇异值分解的机织物瑕疵检测算法 被引量:13

Woven fabric defect detection using singular value decomposition
下载PDF
导出
摘要 针对现有算法对机织物纹理适应性和实时性不佳的问题,提出一种基于奇异值分解(SVD)的机织物瑕疵检测算法。首先将正常织物图像的灰度值沿纵横方向进行投影,并将投影所得的序列组成联合投影序列;然后对联合投影序列组成的矩阵进行奇异值分解,并提取基向量;最后应用所提取的基向量对待检测样本进行重构,并通过重构误差区分瑕疵和正常纹理。重点探讨了基向量个数和子窗口大小对检测效果的影响。经过4 693个样本的实验,结果表明,在误检率小于10%情况下,本文算法的检出率可达90%。经比较,本文算法在检测精度和实时性上都优于AR模型算法。 Aiming at texture adaptability and real time issues challenging for most existing algorithms,a method for woven fabric defect detection using singular value decomposition( SVD) is proposed. Firstly,the gray values of the normal fabric image are projected along the horizontal and vertical directions,and the resulting two sequences are combined into a joint sequence. Secondly,the matrix composed of the joint sequences is solved by SVD,and then the basis vectors are extracted. Finally the extracted basis vectors are used to reconstruct the sample to be tested and its reconstruction error can be used to discriminate defect from normal texture. The effect of the number of vectors and patch size on the detection result is investigated. The experimental results of 4 693 samples show that the proposed method can achieve a detection rate of 90% with a false detection rate below 10%. Comparison shows that the proposed method outperforms AR method in terms of both detection accuracy and real time.
出处 《纺织学报》 EI CAS CSCD 北大核心 2014年第7期61-66,共6页 Journal of Textile Research
基金 国家自然科学基金资助项目(61379011 61271006) 中央高校基本科研业务费专项资金资助项目(13D110115)
关键词 机织物 瑕疵检测 奇异值分解 基向量 重构误差 AR模型 woven fabric defect detection singular value decomposition basis vector reconstruction error AR model
  • 相关文献

参考文献16

二级参考文献105

  • 1李立轻,黄秀宝.Fabric Defect Detection Using Adaptive Wavelet Transform[J].Journal of Donghua University(English Edition),2002,19(1):35-39. 被引量:4
  • 2王树文,闫成新,张天序,赵广州.数学形态学在图像处理中的应用[J].计算机工程与应用,2004,40(32):89-92. 被引量:200
  • 3陈国强,赵俊伟,黄俊杰,刘万里.基于Matlab的AR模型参数估计[J].工具技术,2005,39(4):39-40. 被引量:26
  • 4步红刚,黄秀宝.基于计算机视觉的织物疵点分类的近期进展[J].东华大学学报(自然科学版),2006,32(4):143-146. 被引量:6
  • 5Chan C H, Pang G K H. Fabric defect detection by Fourier analysis [J]. IEEE Transactions on Industry Applications, 2000,36(5) : 1267-1276.
  • 6Chetverikov D, Hanbury A. Finding defects in texture using regularity and local orientation[J]. Pattern Recognition, 2002,35 (10) : 203-218.
  • 7Thanagasundram S, Schlindwein F S. Autoregressive based diagnostics scheme for detection of bearing faults[C]//Proceedings of International Conference on Noise and Vibration Engineering (ISMA2006). Leuven Belgium: ISMA, 2006, V1- 8:3531-3545.
  • 8Wang H, Lee J, Ueda T, et al. Engine health assessment and prediction using the group method of data handling and the method of match matrix-autoregressive moving average[C]//Proceedings of the ASME Turbo Expo 2007. Montreal, canada: ASME, 2007, V1 : 697-702.
  • 9Zhan Y M, Mechefske C K. Robust detection of gearbox deterioration using compromised autoregressive modeling and Kolmogorov-Smirnov test statistic-Part I:Compromised autoregressive modeling with the aid of hypothesis tests and simulation analysis[J]. Mechanical Systems and Signal Processing, 2007,21 (5) :1953-1982.
  • 10Zban Y M, Mechefske C K. Robust detection of gearbox deterioration using compromised autoregressive modeling and Kolmogorov-Smirnov test statistic-Part I: Compromised autoregressive modelingwith the aid of hypothesis tests and simulation analysis [J]. Mechanical Systems and Signal Processing, 2007,21 (5) : 1983-2011.

共引文献346

同被引文献89

引证文献13

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部