期刊文献+

新的非线性弥散关系及其波浪变形数学模型

Nonlinear dispersion relation and wave transformation model
下载PDF
导出
摘要 针对Hedges、Kirby、李瑞杰提出的修正非线性弥散关系在浅水区存在较大偏差的问题,给出了一个在整个水深范围内相对波速具有单值性的新的非线性弥散关系。它在深水区与二阶Stokes波的弥散关系相一致,在浅水区较前人的修正式与Hedges经验弥散关系更加吻合,在中等水深区域与二阶Stokes波的弥散关系及Hedges经验弥散关系的偏差也达到最小。为了避免非线性弥散关系引入缓坡方程而导致的迭代,采用显式形式近似表达该非线性弥散关系,得到与其精度几乎完全相同的显式表达式。用该显式表达式,结合弱非线性效应的缓坡方程,得到考虑非线性弥散影响的波浪变形数学模型。用该模型对复杂地形进行模拟,计算结果与实测值吻合很好。 Due to the larger deviation in shallow water of the nonlinear dispersion relations modified by Hedges,Kirby and Li Ruijie,a new nonlinear dispersion relation,whose relative wave velocity was monotonic in the entire depth,was presented in this paper.It is consistent with the dispersion relation of second order stokes wave in deep water,and is closer to Hedges' empirical one than previous modified relations in shallow water.In moderate depth water,its deviation is also minimal.In order to avoid iterations due to the introduction of nonlinear dispersion relation to the mild slope equation,an explicit form was adopted to approximately express the new nonlinear dispersion relation.And the accuracy of the two was almost identical.The explicit expression,along with the mild slope equation,could constitute a wave transformation model,which included nonlinear dispersion effects.Using the new model to simulate a complicated seabed,the calculation results are in good agreement with the measured values.
出处 《水道港口》 2014年第3期203-208,共6页 Journal of Waterway and Harbor
关键词 新的非线性弥散关系 显式近似 波浪变形模型 new nonlinear dispersion relation explicit approximation wave transformation model
  • 相关文献

参考文献16

  • 1WhithamG B.Non-linear dispersion of waterwaves[J].Fluid Meeh.,1967,27(2):399-412.
  • 2HedgesTS.An empirical modification to linear wavetheory[J].Proc.Inst.Civ.Eng,1976,61:575-579.
  • 3BooijN.Gravitywaves on water with non-uniform depth and curren[tR].Dept.Civ.Eng:Delft UniversityofTechnology,1981.
  • 4DingemansMW.Water wave propagation overuneven bottoms[M].Singapore:WorldScientific,1997.
  • 5Kirby J T,Dalrymple R A.An approximate model for nonlinear dispersion in monochromatic wave propagation models[J].CoastalEng.,1986(9):545-561.
  • 6Hedges T S.An approximate model for nonlinear dispersion in monochramatic wave propagation models[J].Coastal Eng.,1987(13):23-54.
  • 7Kirby J T,Dalrymple R A.An approximate model for nonlinear dispersion in monochramatic wave propagation models[J].CoastalEng.,1987(11):89-92.
  • 8李瑞杰,Dong-Young Lee,诸裕良.非线性弥散效应及其对波浪变形的影响[J].海洋工程,2001,19(4):46-51. 被引量:9
  • 9李瑞杰,李东永.Nonlinear Dispersion Effect on Wave Transformation[J].China Ocean Engineering,2000,15(3):375-384. 被引量:5
  • 10李瑞杰,严以新,曹宏生.Nonlinear Dispersion Relation in Wave Transformation[J].海洋工程:英文版,2003,17(1):117-122. 被引量:6

二级参考文献43

  • 1Hong Guangwen Professor, Research Institute of Coastal and Ocean Engineering, Hohai University, 1 Xikang Road, Nanjing 210024.Mathematical Models for Combined Refraction-Diffraction of Waves on Non-Uniform Current and Depth[J].China Ocean Engineering,1996,11(4):433-454. 被引量:35
  • 2洪广文 成功大学.非均匀水流中波浪折射-绕射数学模型.1995两岸港口及海岸开发研讨会论文集:上集[M].台南:成功大学出版社,1995.81-96.
  • 3洪广文 中国海洋工程学会.波浪折射、绕射数学模型.第七届全国海岸工程学术讨论会论文集:下集[M].北京:海洋出版社,1994.808-815.
  • 4洪广文 中国海洋工程学会.缓变水深和流场水域波浪折射、绕射数值模拟.第八届全国海岸工程学术讨论会论文集:下集[M].北京:海洋出版社,1997.703-714.
  • 5[1]Berkhoff, J. C. W., 1972. Computation of combined refraction-diffraction, Proc. 13th Coat. Engrs. Conf. ASCE, NewYork, N. Y., 471~490.
  • 6[2]Berkhoff. J. C. W., Booij, N. and Radder, A. C., 1982. Verification of numerical wave propagation models for simple harmonic linear water waves, Coastal Eng., (6), 255~279.
  • 7[3]Booij, N., 198 1. Gravity wares on water with non-uniform depth and current, Rep. No. 81-1, Dept. Civ. Eng., Delft University of Technology.
  • 8[4]Dingemans, M. W., 1997. Water. ware propagation over uneven bottonts, Part l—Linear Wave Propagation, World Scientific Press, Singapore, 338~348.
  • 9[5]Hedges, T. S., 1976. An empirical modification to linear wave theory, Proc. In st. Cir. Eng.. 61,575~579.
  • 10[6]Hedges, T. S., 1987. An approximate model for nonlinear dispersion in monochromatic wave propagalion models, by Kirby J. T. and Dalrymple R. A. Discussion, Coastal Eng., (13), 87~88.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部