期刊文献+

两点分数阶微分方程耦合系统边值问题的解 被引量:2

Solution for Two-point Boundary Value Problems of Fractional Differential Equation of Coupling System
下载PDF
导出
摘要 讨论一类非线性分数阶微分方程耦合系统的两点边值问题,应用Green函数将微分系统转化为等价的积分系统,应用不动点定理证明系统正解的存在性和唯一性,并给出系统无解的充分条件。 Discusses a class of the two-point boundary value problems of nonlinear fractional differ-ential equation of coupling system,using the Green function,differential system can be converted toequivalent integral system,with the fixed point theorem,the existence and uniqueness of positivesolutions for system are abtained,sufficient conditions of no solutions are given.
出处 《江汉大学学报(自然科学版)》 2014年第3期23-26,共4页 Journal of Jianghan University:Natural Science Edition
基金 新疆维吾尔自治区自然科学基金项目(201318101-14)
关键词 分数阶微分方程 耦合系统 边值问题 不动点定理 fractional differential equation coupled system boundary value problem fixed point theorem
  • 相关文献

参考文献12

  • 1KILBAS A A,SRIVASTAVA H M,TRUJILLO J J.Theory and application of fractional differential equations[M].Amsterdam:Elsevier B V,2006.
  • 2PODLUBNY I.Fractional differential equations:mathematics in science and engineering[M].New York:Academic Press,1999.
  • 3SAMKO S G,KIBAS A A,Marichev O I.Fractional integral and derivatives(theory and applications)[M].Switzerland:Gordon and Breach,1993.
  • 4SU X.Boundary value problem for a coupled system of nonlinear fractional differential equation[J].Applied Mathematics and Computation,2004,35(3):611-621.
  • 5苏新卫.分数阶微分方程耦合系统边值问题解的存在性[J].工程数学学报,2009,26(1):133-137. 被引量:30
  • 6郭建敏,郭彩霞,康淑瑰.一类非线性分数阶奇异耦合系统正解的存在性[J].生物数学学报,2013,28(1):143-148. 被引量:6
  • 7XU X,JIANG D,YUAN C.Multiple positive solutions for boundary value problem of nonlinear fractional differential equation[J].Nonlinear Analysis Series A:Theory,Methods and Applications,Nonlinear Analysis,2009,71:4676-4688.
  • 8ZHANG S Q.Positive solution for boundary value problem of nonlinear fractional differential equations[J].Electronic Journal for Differential Equations,2006,36:1-12.
  • 9XIONG Y,ZHONG L W,WEI D.Existence of positive solution for boundary value problem of nonlinear fractional differential equations[J].Communications in Nonlinear Science and Numerical Simulation,2012,17:85-92.
  • 10SU X W.Boundary value problem for a coupled system of nonlinear fractional differetial equations[J].Applied Mathematics Letters,2009,22:64-69.

二级参考文献26

  • 1Bai Z B, Lii H S. Positive solutions for boundary value problem of nonlinear fractional differential equa- tion[J]. J Math Anal Appl, 2005, 311:495-505.
  • 2Zhang S Q. Positive solutions for boundary-value problems of nonlinear fractional differential equations[J]. Electronic Journal of Differential Equations, 2006, 36:1-12.
  • 3Gejji V D, Jafari H. Adomian decomposition: a tool for solving a system of fractional differential equa- tions[J]. J Math Anal Appl, 2005, 301:508-518.
  • 4Podlubny I. Fractional Differential Equations, Mathematics in Science and Engineering[M]. New York/London/Toronto: Academic Press, 1999. vol, 198.
  • 5Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives (Theory and Applications)[M]. Switzerland: Gordon and Breach, 1993.
  • 6KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations [ M ]. Amsterdam: Elsevier, 2006.
  • 7BAI ZHANBING, LID HAISHEN. Positive solutions for boundary value problem of nonlinear fractional differential equation [ J ]. J Math Anal Appl, 2005, 311 (2) : 495 -505.
  • 8GAN SI Q1NG. Dissipativity of 0-methods for nonlinear volterra delay-integru-differential equations [ J ]. J Comput AppI Math, 2007, 206 (2) : 898 - 907.
  • 9SUN HONGRUI, TANG LUTIAN, WANG YINGHAI. Eigeuvalue problem for p-laplacain three-point boundary value problems on time scales[J]. J Math Anal Appl, 2007, 331:248 -262.
  • 10ZHANG SHUQIN. Positive solutions for boundary-value problems of nonlinear fractional, dtffereritfal equationsc ] 3. Electronic Jourrial of Differential Equations, 2006, 2006(36) : 1 - 12.

共引文献32

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部