期刊文献+

基于自适应遗传神经网络的银行客户分类研究 被引量:4

Research on Classification of Bank Customers Based on Adaptive GA-BP Algorithm
下载PDF
导出
摘要 银行产品的营销行为都是针对广大客户的。若能提前分辨出哪些是优质客户,再为其定制合理的营销策略,那银行就能获得更大的竞争力。文中将遗传算法与BP神经网络结合用于对银行客户分类进而预测客户是否会购买银行产品。该方法有效地克服了BP神经网络容易陷入局部极小值和收敛速度慢的问题,并且针对其中遗传算法的计算时间和精度问题提出了一种新的自适应遗传算法。实验结果表明,基于这种自适应的遗传神经网络的方法用更短的计算时间达到了更高的预测精度,可以准确地为银行客户分类。 The products in bank marketing are faced to the majority of customers. If tell in which are high-quality customers in advance and then develop reasonable marketing strategy for them,bank will be able to achieve greater competitiveness. It combines genetic algo-rithm with BP network for bank customers classification to predict whether the customers will buy the bank marketing products. It can ef-fectively overcome the shortcomings of BP network,such as trapping to the local minimum and slowness in training speed. Aiming at the computation time and accuracy of genetic algorithm,a new adaptive GA-BP algorithm is proposed. Experimental results show that the a-daptive GA-BP algorithm can reach a higher prediction accuracy with a shorter calculation time and it can classify bank customers accu-rately.
出处 《计算机技术与发展》 2014年第7期192-195,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(60473142) 安徽省高校重点项目(KJ2010A051 KJ2011A039) 安徽省高校省优秀青年人才基金项目(2009SQRZ076)
关键词 遗传算法 自适应 神经网络 客户分类 genetic algorithm adaptive neural network customer classification
  • 相关文献

参考文献8

二级参考文献52

共引文献174

同被引文献63

  • 1陈学泓,陈晋,杨伟,朱锴.基于误差分析的组合分类器研究[J].遥感学报,2008,12(5):683-691. 被引量:5
  • 2李强.创建决策树算法的比较研究——ID3,C4.5,C5.0算法的比较[J].甘肃科学学报,2006,18(4):84-87. 被引量:51
  • 3大数据分析技术的发展[EB/OL].2012-05-16.http://tech.ccidnet.com/art/32963/20120516/3859799-1.html.
  • 4蒙肖莲,杨毓.商业银行基于客户价值的客户识别模型研究[J].价值工程,2007,26(6):6-10. 被引量:5
  • 5Rigby D K.Management Tools 2001 Global Results:Annual Survey of Senior Executives [R] .BAIN &COMPANY In- cResearch Report, 2002:1- 4.
  • 6Dhar, V. (2013). "Data science and prediction". Communi- cations of the ACM 56 (12): 64. doi: 10.1145/2500499.
  • 7Jeff Leek (2013-12-12). "The key word in "Data Science" is not Data, it is Science". Simply Statistics IP Naur. Report on the algorithmic language ALGOL 60 [R]. Comm. ACM, 1960(5): 299 -314.
  • 8W Cleveland. Data science: an action plan for expanding the technical areas of the field of statistics [J] . International Statistical Review, 2010(I) : 21 -26.
  • 9朱扬勇,熊赘.数据学与数据科学发展现状[EB/OL].http://www.paper.edu.cn/eleasepaper/contenff201106329,2011-06-16.
  • 10C Lynch. Jim Gray's Fourth Paradigm and the Construction of the Scientific Record [A].

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部