摘要
采用水热法在硝酸锌(Zn(NO3)2·6H2O)与硝酸镁(Mg(NO3)2·6H2O)的生长液中制备了Mg掺杂的Mg/ZnO(MZO)纳米棒,其中生长液中Mg2+的物质的量浓度c(Mg2+)分别为0.05 mol/L、0.10 mol/L、0.25 mol/L和0.50 mol/L.利用场发射电子显微镜(FESEM)、X射线光电子能谱仪(XPS)、X射线衍射仪(XRD)、光致发光谱(PL)测试及场发射测试对所制备的MZO纳米棒的表面形貌、成分、晶体结构、光学性能及场发射性能进行了研究.结果表明:随着生长液中c(Mg2+)的增加,MZO纳米棒的直径逐渐减小、缺陷逐渐增加;且掺入的Mg含量与c(Mg2+)并不成正比关系;当生长液中的c(Mg2+)为0.10 mol/L时,所制备的MZO纳米棒的场发射性能最好,其开启场强为2.85 V/μm.
Mg-doped ZnO (MZO) nanorod arrays were fabricated by hydrothermal method in the mixedsolution of Zn( NO3 )·6H2O and Mg( NO3 )2 ·6H2O with Mg2+ concentrations varying from 0. 05 mol/L,0. 10 mol/L, 0.25 mol/L to 0.50 mol/L. The morphology and composition of MZO arrays were charac-terized by field emission scanning electron microscopy (FESEM) and X-ray photoelectron spectroscopy(XPS), respectively. The effects of Mg dopants on the crystal structures and optical properties were in-vestigated by using X-ray diffraction(XRD) and photoluminescence( PL), then their field emission prop-erties were also evaluated. Results show that higher doping led to the formation of nanorod arrays withsmaller diameters and more defects, but the higher c ( Mg2 + ) in solution did not induce higher Mg doping.The best field emission performance of the MZO nanorod arrays was synthesized in 0. 10 mol/L c( Mg2+ )solution, which had a low turn-on field of 2. 85 V/μm.
出处
《纳米技术与精密工程》
CAS
CSCD
2014年第4期269-274,共6页
Nanotechnology and Precision Engineering
基金
国家高技术研究发展计划(863计划)资助项目(2013AA030601)
国家自然科学基金资助项目(61106053
61101169)
电子薄膜与集成器件国家重点实验室开放基金资助项目(KFJJ201309)
关键词
Mg掺杂
MZO纳米棒
水热法
场发射
Mg doping
MZO nanorod
hydrothermal method
field emission