期刊文献+

滚动压印装置研制与压印填充模拟 被引量:3

Design of Roll-to-Roll Imprinting Device and Simulation of Filling Process in Roll-to-Roll
原文传递
导出
摘要 紫外滚动压印因其可以在室温下、普通大气环境中高效大面积地进行微结构制作而备受瞩目.利用自行研制的紫外滚动压印装置,实现了微结构的快速复制.实验中发现当压印速度达到某一特定值时,会不可避免地产生气泡缺陷.采用流体软件Fluent对滚动压印充填过程进行分析,来研究气泡缺陷的产生机理.结果表明,压印速度过高导致空气被堵在图形空腔内,最终形成气泡缺陷.同时,低黏度的胶液和小的接触角更利于模型填充.此研究对于获得优化的滚动压印工艺具有一定的意义. The UV roll-to-roll(R2R) imprinting technique can provide a solution for low cost and largescale throughput of reproducing microstructures at room temperature in atmospheric environment. A self-developed UV R2R imprinting device was used to fulfill fast rolling printing of microstructures, The re-peated experiments reveal that there is a maximum imprinting velocity if a perfect printed model withoutbubble defects could be gained. The computational fluid dynamics software--Fluent was employed tostudy the resin filling process of R2R imprinting to obtain the forming mechanism of bubbles. Results in-dicate that air will be trapped in the pattern cavity if the imprinting velocity is too large, which bringsabout bubbles. Meanwhile, the lower viscosity resin and small contact angle are highly desired for thefilling process, which is significant for getting optimization of R2R imprinting parameters
出处 《纳米技术与精密工程》 CAS CSCD 2014年第4期281-285,共5页 Nanotechnology and Precision Engineering
基金 国家自然科学基金资助项目(50905173 51075381)
关键词 滚动压印 紫外压印 气泡缺陷 流体仿真 roll-to-roll imprinting UV imprinting bubble defects fluid simulation
  • 相关文献

参考文献17

  • 1Tan H, Gilbertson A, Chou S Y. Roller nanoimprint lithog- raphy [ J ]. Journal of Vacuum Science & Technology B : Mi- croelectronics and Nanometer Structures, 1998, 16 ( 6 ) : 3926 -3928.
  • 2Ahn S H, Kim J S, Guo L J. Bilayer metal wire-grid polar- izer fabricated by roll-to-roll nanoimprint lithography on flex- ible plastic substrate [ J ]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2007, 25(6): 2388-2391.
  • 3Jackson W B, Almanza-Workman M, Chaiken A, et al. Ac- tive-matrix backplanes produced by roll-to-roll self-aligned imprint lithography (SAIL) [ C ]//Proceedings of the SID Symposium Digest of Technical Papers. 2008, 39 ( 1 ) : 322- 325.
  • 4Scndergaard R, Htisel M, Angrno D, et al. Roll-to-roll fab- rication of polymer solar cells [J]. Materials Today, 2012, 15(1) : 36-49.
  • 5Yang S-Y, Cheng F-S, Xu S-W, et al. Fabrication of mic- rolens arrays using UV micro-stamping with soft roller and gas-pressurized platform[J]. Microelectronic Engineering, 2008, 85(3): 603-609.
  • 6Chou T H, Yang W H, Huang T Y, et al. Roll-to-roll em- bossing of sunlight guide film with wide outgoing angle [ J]. International Journal of Automation Technology, 2011, 5 (2) : 212-217.
  • 7Lan Shuhuai, Song Jung-Han, Lee Moon G, et al. Continu- ous roll-to-fiat at thermal imprinting process for large-area micro-pattern replication on polymer substrate [ J ]. Micro- electronic Engineering, 2010, 87 (12) : 2596-2601.
  • 8Liu Hongzhong,Shi Yongsheng,Yin Lei,Jiang Weitao,Lu Bingheng.Roll-to-roll imprint for high precision grating manufacturing[J].Engineering Sciences,2013,11(1):39-43. 被引量:3
  • 9Shen Su, Zhou Fang, Pu Donglin, et al. Microlens arrayfilm fabricated by UV roll-to-roll nanoimprinting for enhan- cing out-coupling efficiency of organic light-emitting devices [C ]//Proceedings of 2012 International Conference on Ma- nipulation, Manufacturing and Measurement on the Nanoscale. Shanxi, China, 2012: 165-168.
  • 10Zhou Xiaohong, Fang Zongbao, Zhang Heng, et al. Re- search on pattern-induced transparent conductive films [ C]//Proceedings of the SPIE --The International Society for Optical Engineering. Beijing, China, 2012: 85550G-1- 6.

二级参考文献16

  • 1CHOU S Y, KRAUSS P R, RENSTROM P J. Nanoimprint lithography[J]. Journal of Vacuum Science andTechnologyB, 1996, 14(6): 4 129-4 133.
  • 2HIRAI Y, KONISHI T, YOSHIKAWA T, et al. Simulation and experimental study of polymer deformation in nanoimprint lithography[J]. Journal of Vacuum Science and Technology B, 2004, 22(6): 3 288- 3 293.
  • 3YONG W B. Analysis of the nanoimprint lithography with a viscous model[J]. Microelectronic Engineering, 2005, 77.. 405-411.
  • 4ROWLAND H D, SUN A C, SCHUNK P R, et al. Impact of polymer films thickness and cavity size on polymer flow during embossing: Toward proces design rules for nanoimprint lithography[J]. Journal of Micromechanics and Microengineering, 2005, 15:2 414-2 425.
  • 5HEYDERMAN L J, SCHIFT H, DAVID C, et al. Flow behaviour of thin polymer films used for hot embossing lithography[J]. Microelectronic Engineering, 2000, 54: 229-245.
  • 6MACINTYRE D S, THOMS S. A study of resist flow during nanoimprint lithography[J]. Microelectronic Engineering, 2005, 78-79: 670-675.
  • 7SHIN S, LEE W I. Finite element analysis of incompressible viscous flow with moving free surface by selective volume of fluid method[J]. International Journal of Heat and Fluid Flow, 2000, 21: 197-206.
  • 8Gale M T. Replication techniques for diffractive optical elements[J].Microelectronic Engineering,1997,(3-4):321-339.
  • 9Hansen H N,Hocken R J,Tosello G. Replication of micro and nano surface geometries[J].Manufacturing Technology,2011,(02):695-714.
  • 10Babak Heidari,Ivan Maximov,Eva-Lena Sarwe. Large scale nanolithography using nanoimprint lithography[J].Microelectronics and Nanometer Structures,1999,(06):2961-2964.

共引文献8

同被引文献16

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部