期刊文献+

基于多示例学习的图像检索方法 被引量:1

Multi-instance learning based approach to image retrieval
下载PDF
导出
摘要 多示例学习对处理各类歧义问题有较好的效果,将它应用于图像检索问题,提出了一种新的基于多示例学习的图像检索方法。首先提取每幅图像的局部区域特征,通过对这些特征聚类求得一组基向量,并利用它们对每个局部特征向量进行编码,接着使用均值漂移聚类算法对图像进行分割,根据局部特征点位置所对应的分割块划分特征编码到相应的子集,最后将每组编码子集聚合成一个向量,这样每幅图像对应一个多示例包。根据用户选择的图像生成正包和反包,采用多示例学习算法进行学习,取得了较为满意的结果。 Multi-instance learning has better learning effects for all kinds of ambiguity problem, soapplying it to the image retrieval problem. This paper proposes a new method of image retrieval based onmulti-instance learning. First, it extracts local area features from each image, getting the basis vectors byclustering these features, and then utilizing them to encode every local feature. After that using the meanshift clustering algorithm for image segmentation, then partitioning each feature encodes into acorresponding subset according to the segmentation that local area feature points belong to. Last,aggregating each coding subset into a vector, so that every image is corresponding to a bag of instances.Next, query images posed by the user are transformed into corresponding positive and negative bags and amulti-instance learning algorithm is employed for image retrieval that achieves satisfactory results.
作者 徐胜 吴新娟
出处 《信息技术》 2014年第7期106-110,共5页 Information Technology
关键词 基于内容的图像检索 多示例学习 局部区域特征 图像特征编码 线性核函数 content based image retrieval multi-instance learning local area feature image featurecoding linear kernel function
  • 相关文献

参考文献14

  • 1Dietterieh T G, Lathrop R H, Lozano-P6roz T. Solving the multiple instance problem with axis-parallel rectangles [ J]. Artificial Intelli- gence, 1997,89(1) :31 -71.
  • 2Maron O. Learning from ambiguity[ D]//Massachusetts Institute of Technology, 1998.
  • 3Zhang Q, Goldman S A. EM-DD:An improved multiple-instance learning technique[ C ]//Advances in neural information processing systems, 2001 : 1073 - 1080.
  • 4Wang J, Zucker J-D. Solving the multiple-instance problem: a lazy learning approach[ C]// Proceedings of the 17th International Con- ference on Machine iearning, San Francisco, CA, 2000:1119 -1125.
  • 5Tong S, Chang E. Support vector machine active learning for image retrieval [ C ]//Proceedings of the ninth ACM international confe- rence on Multimedia. ACM, 2001 : 107 - 118.
  • 6Ruffo G. Learning single and multiple instance decision trees for computer security applications[ D]//Ph. D Dissertation. Department of Computer Science, University of Turin,Torino, Italy,2000.
  • 7Zucker J-D, Chevaleyre Y. Solving multiple-instance and multiple- part learning problems with decision trees and decision rules[ C]// Stroulia E, Matwin S, eds. Lecture Notes in Artificial Intelligence. Berlin, Germany : Springer-Verlag ,2001:204 - 214.
  • 8Fei-feiL, Perona P. A bayesian hierarchical model for learning natu- ral scene categories[ C ]//Computer Vision and Pattern Recognition, 2 CVPR 2005. IEEE Computer Society Conference on. IEEE, 2005 (2) :524 -531.
  • 9Koenderink J J, Van doom A J. The structure of locally ordefless images[J]. International Journal of Computer Vision, 1999,31 (2 - 3) :159 -168.
  • 10Wang J, Yang J, Yu K, et al. Locality-constrained linear ceding for image classifieation E C ]//Computer Vision and Pattern Recogni- tion (CVPR), 2010 IEEE Conference on. IEEE, 2010:3360 - 3367.

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部