期刊文献+

随机性检测方法在加密比特流识别中的应用研究

Research on Encrypted Bit Stream Identification by Randomness Test
下载PDF
导出
摘要 为识别链路层加密比特流,以未加密与加密数据在随机统计特性上的差异为依据,对4种典型的随机性检测方法在比特流长度不同时的识别率进行了比较研究.针对块内最长游程检测过程中出现的比特流尾部比特位不能构成完整子块的问题,提出了2种可行的处理方案.通过对块内最长游程检测门限值函数的研究,基于参数优化的方法改进了块内最长游程的检测方案,在一定程度上提高了识别率.最后,以某无线网络链路层加密比特流为识别对象,对提出方案的有效性进行了验证. To identify the encrypted bit stream of data link layer,four typical randomness tests are compared based on the differences in statistical characteristics of unencrypted and encrypted bit streams.Two possible treatments are proposed to solve the problem that the tail bits cannot constitute a complete sub-block during the test for the longest run of ones in a block.The detection scheme of the test is improved for the longest run of ones in a block based on the method of parameter optimization and the recognition rate is to a certain extent improved.Finally,the proposed scheme is verified based on the encrypted bit stream of a wireless network.
出处 《军械工程学院学报》 2014年第3期53-59,共7页 Journal of Ordnance Engineering College
基金 军队科研计划项目
关键词 链路层 加密比特流 随机性检测 块内最长游程检测 data link layer encrypted bit stream randomness test test for the longest run of ones in a block
  • 相关文献

参考文献10

  • 1龙文,马坤,辛阳,杨义先.适用于协议特征提取的关联规则改进算法[J].电子科技大学学报,2010,39(2):302-305. 被引量:11
  • 2WRIGHT V C, MONROSE F, MASSON M G. On infer- ring application protocol behaviors in encrypted network traffic[J]. Journal of Machine Learning Research, 2006, 7(12) :2745-2769.
  • 3SUN G L,XUE Y B,DONG Y F,et al. A novel hybrid method for effectively classifying encrypted traffic:pro- ceedings of communications and systems security, 2010 [C]//Proceedings of Global Telecommunications Con- ference. Miami: IEEE, 2010 : 1-5.
  • 4TABATABAEI S T, ADEL M, KARRAY F, et al. Ma- chine learning-based classification of encrypted internet traffic[C]//Machine Learning and Data Mining in Pat- tern Recognition. Berlin:Springer,2012:578-592.
  • 5ZHANG M,ZHANG H L,ZHANG B. Encrypted traffic classification based on an improved clustering algorithm [C]//Trustworthy Computing and Services. Beijing: Springer, 2012 : 124-131.
  • 6DU Y,ZHANG R H. Design of a method for encrypted P2P traffic identification using K-means algorithm [J]. Telecommunication Systems, 2013,53 ( 1 ) : 163-168.
  • 7赵博,郭虹,刘勤让,邬江兴.基于加权累积和检验的加密流量盲识别算法[J].软件学报,2013,24(6):1334-1345. 被引量:41
  • 8MENEZES AJ, VAN OORSCHOT PC, VANSTONE SA.应用密码学手册[M].胡磊,王鹏,译.北京:电子工业出版社,2005.
  • 9NIST FIPS PUB 140-2-2001, Security requirements for cryptographic modules[S].
  • 10NIST SP800-22, A statistical test suite for random and pseudorandom number generators for cryptographic ap- plications revisionla[S].

二级参考文献27

  • 1SEN S, SPATSCHECK O, WANG D. Accurate, scalable in-network identification of P2P traffic using application signatures[C]//WWW 2004: Proceedings of Thirteenth International World Wide Web Conference. New York: ACM Press, 2004: 512-521.
  • 2HAMZA D, SANDRINE V, DAVID R. A markovian signature-based approach to IP traffic classification[C]// MineNet'07: Proceedings of the Third Annual ACM Workshop on Mining Network Data. San Diego: ACM Press, 2007: 29-34.
  • 3HAFFNER P, SEN S, SPATSCHECK O, et al. ACAS: Automated construction of application signatures[C]// Proceedings of ACM SIGCOMM 2005 Workshops: Conference on Computer Communications. Philadelphia: ACM Press, 2005: 197-202.
  • 4HAN Hong, LU Xian-liang. Data mining aided signature discovery in network-based intrusion detection system[J]. ACM SIGOPS Operating Systems Review, 2002, 36(4): 7-13.
  • 5AGRAWAL R, IMIELINSKI T, WAMI A S. Mining association rules between sets of items in large databases[C]//Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. Washington: ACM Press, 1993:207-216.
  • 6MOORE A, ZUEV W. Intemet traffic classification using Bayesian analysis techniques[C]//SIGMETRICS 2005: Proceedings of International Conference on Measurement and Modeling of Computer Systems. Banff, AB, Canada: ACM Press. 2005: 50-60.
  • 7FANG W, PETERSON L. Inter-AS traffic patterns and their implications[C]//Conference Record of 1999 IEEE Global Telecommunications Conference. Rio de Janeiro: IEEE Press, 1999:1859-1868.
  • 8PITKOW J. Summary of WWW characterizations[J]. World Wide Web, 1999, 2: 3-13.
  • 9ZANDER S, NGUYENL T, ARMITAGEL G. Self-learning IP traffic classification based on statistical flow characteristics[C]//PAM 2005: Proceedings of 6th International Workshop on Passive and Active Network Measurement. Boston: Springer Verlag. 2005: 325-328.
  • 10KRISHNANURTHY B, WANG J. Automated traffic classification for application specific peering[C]//IMW 2002: Proceeds ofACM SIGCOMM Intemet Measurement Workshop. Marseille: ACM Press, 2002:179-180.

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部