期刊文献+

多晶硅铸锭炉热场结构的改进与模拟 被引量:7

Optimization and Simulation of Thermal System for Multicrystal Silicon Casting Furnace
原文传递
导出
摘要 在多晶硅铸锭炉内采用了凹坑坩埚和凹坑坩埚平台组合的改进结构,并结合COMSOL4.3a模拟软件对改进前后的热场做了对比分析。结果表明:与改进前相比,在改进后的热场结构中,硅熔体结晶界面趋于平坦,等温线更加均匀,熔体轴向温度梯度增加了大约2 K/cm,有利于柱状晶的生长;硅熔体对流强度增大,可以使溶质分布更加均匀;GL/VS变大、溶质边界层厚度减小,有利于阻碍结晶界面前沿发生组分过冷,进一步抑制结晶界面细晶的产生。 The optimization of thermal structure uses the multi-crystalline casting furnace with notched crucible and pit crucible pedestal, then the thermal distribution combining the simulation soft-ware with comsol4.3a before and after optimization were analyzed. The stimulation results indicate that: after optimization, the interface of silicon melt becomes flatten and the isothermal become uniform as well as the axial temperature gradient in silicon melt increasing about 2 k/cm, which is conducive to the growth of columnar crystals in multi-crystalline silicon. The convection intensity in the silion melt becomes strengthen, so the solute distributes more uniform. It is difficult to generate constitutional supercooling in the crystalline intreface since the Gt/Vs becoming large and the solute boundary layer thickness decreasing, which can suppress the geuneration of fine grain.
出处 《热加工工艺》 CSCD 北大核心 2014年第13期64-68,共5页 Hot Working Technology
基金 国家自然科学基金资助项目(51164033) 江西省自然科学基金资助项目(20132BAB206021) 湖南省教育厅科学研究项目(13C022) 江西省高等学校科技落地计划项目(KJLD-12050) 江西省教育厅科学技术研究项目(11739) (12748) 样级招标课题(xj0901) 2014年度湖南省自然科学基金资助项目(14JJ2118)
关键词 多晶硅 凹坑坩埚 热场 数值模拟 multi-crystalline silicon notched crucible thermal field numerical simulation
  • 相关文献

参考文献18

  • 1Fujiwara K, Pan W, Sawada K, et al. Directional growth method to obtain high quality polycrystalline silicon from its melt [J]. Journal of Crystal Growth. 2006,292(2): 282-285.
  • 2Fujiwara K, Obinata Y, Ujihara T, et al. In-situ observations of melt growth behavior of polycrystalline silicon [J]. Journal of CrystalGrowth, 2004,262(1/2/3/4): 124-129.
  • 3刘秋娣,林安中,林喜斌.多晶硅锭的制备及其形貌组织的研究[J].稀有金属,2002,26(6):416-419. 被引量:22
  • 4娄中士,左然,苏文佳,杨琳.大晶粒多晶硅铸锭生长的热场设计与模拟[J].人工晶体学报,2011,40(6):1602-1606. 被引量:22
  • 5张志强,黄强,黄振飞,李毕武,陈雪.定向凝固多晶硅中细晶产生的原因分析[J].中国科学:技术科学,2011,41(6):754-759. 被引量:12
  • 6Li T F, Yeh K M, Hsu W C, et al. High-quality multi-crystalline silicon (mc-Si) grown by directional solidification using notched crucibles [J]. Journal of Crystal Growth, 2011, 318 (1): 219-223.
  • 7吕铁铮,詹妍,张凤鸣.一种坩埚[P].中国专利CN202144522U.2012.02.15.
  • 8史珺,程素玲.多晶硅铸锭炉的坩埚平台[P].中国专利CN102477581A.2012.05.30.
  • 9罗玉峰,胡云,张发云,廖宾,张斌.多晶硅定向生长的数值模拟研究[J].铸造技术,2011,32(10):1368-1371. 被引量:13
  • 10YllmazF, Karas?zenB. Solving optimal control problems for the unsteady Burgers equation in COMSOL Multiphysics [J]. Journal of Computational and Applied Mathematics, 2011, 235 (16) : 4839-4850.

二级参考文献39

  • 1安涛,高勇,刘飞航,顾林晴.单晶炉横向磁场的优化设计与实现[J].人工晶体学报,2009,38(1):259-264. 被引量:2
  • 2任凤华,党惊知,毛红奎.ZG20Mn5V铸造凝固过程温度场ANSYS模拟仿真[J].现代制造工程,2007(7):48-51. 被引量:8
  • 3S Nakano, X J Chen, B Gao , et al. Numerical analysis of cooling rate dependence on dislocation density in multicrystalline silicon for solar cells [J].Journal of Crystal Growth, 2010, 318: 280-282.
  • 4B Wu, N Stoddard, R H Ma, et al. Bulk Multicrystalline Silicon Growth for Photovoltaic (PV) Application [J]. Crystal Growth ( S0022-0248 ), 2008, 310 ( 7-9 ) : 2178- 2184.
  • 5Yang K,Schwuttke G H,Ciszek T F.Structural and Electrical Characterization of Crystallographic Defects in Silicon Ribbons[J].Journal of Crystal Growth,1980,50:301-310.
  • 6Reis I E,Chung J,Park J,et al.Proceedings of the 11 th European Photovoltaic Energy Conference[C].1992,499.
  • 7Fujiwara K,Nakajima K,Ujihara T,et al.In siru Observations of Crystal Growth Behavior of Silicon Melt[J].Journal of crystal growth,2002,243:275-282.
  • 8Fujiwara K,Obinata Y,Ujihara T,et al.In-situ Observations of Melt Growth Behavior of Polycrystalline Silicon[J].Journal of Crystal Growth,2004,262:124-129.
  • 9Fujiwara K,Pan W,Sawada K,et al.Directional Growth Method to Obtain High Quality Polycrystalline Silicon from Its Melt[J].Journal of Crystal Growth,2006,292:282-285.
  • 10Nagashio K,Kuribayashi K.Growth Mechanism of Twin-related and Twin-free Facet Si Dendrites[J].Acta Materialia,2005,53:3021-3029.

共引文献64

同被引文献48

  • 1李东辉,邱以清,刘相华,王国栋.连铸凝固传热过程的数值模拟[J].铸造技术,2004,25(7):529-531. 被引量:19
  • 2胡芸菲,沈辉,梁宗存,刘正义.多晶硅薄膜太阳电池的研究与进展[J].太阳能学报,2005,26(2):200-206. 被引量:13
  • 3陈国红,王晓军,姚文军,苏文生.多晶硅铸锭炉加热室的设计[J].电子工业专用设备,2007,36(7):36-39. 被引量:6
  • 4Compaan A D. Photovoltaics: clean power for the 21st century[J]. Solar Energy Materials and Solar Cells, 2006, 90(2): 2170-2180.
  • 5Goetzberger A, Hebling C. Photovotaiematerials, past, present, future[J]. Solar Energy Materials and Solar Cells, 2000, 62: 1-19.
  • 6王中河,郑小强,刘志强,等.240Kg多晶硅锭铸锭工艺与硅锭性能的探讨[A].中国太阳能学会.第八届全国光伏会议暨中日光伏论坛论文集[C].深圳:中国太阳能学会,2007:415-417.
  • 7Yang D R, Li L B, Ma X Y, et al. Oxygen- related centers in multicrystalline silicon[J].Solar Energy Materials and Solar Cells, 2000,62(1-2):37-41.
  • 8Kvande R, Mjos O,Ryningen B. Growth rate and impurity distribution in multicrystalline silicon for solar eells[J]. Materi- als Science and Engineering, 2005, (9) : 545- 549.
  • 9USUI O, MUTO H, KIKUNAGA T. Evaluation of temperature distri- bution of a power semiconductor chip using electrothermal simulation [ J]. Transactions of the Institute of Electrical Engineers of Japan, 2014,124(1) :108-115.
  • 10ALLARD B,GARRAB H, MOREL H. Electro-thermal simulation in- cluding a temperature distribution inside power semiconductor devices [ J ]. International Journal of Electronics,2005,92 ( 4 ) : 189-213.

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部