期刊文献+

基于二次修正的LBP算子和稀疏表示的人脸表情识别 被引量:3

Facial expression recognition based on improved IBP operator and sparse representation
下载PDF
导出
摘要 针对传统局部二元模式(LBP)算子存在直方图维数过高而导致识别速度降低和二值数据对噪声很敏感的问题,在分析传统LBP算子的原理基础上,对人脸表情特征的数据量增加、人脸表情特征向量和特征识别过程的优化进行如下改进:将人脸表情图像经过小波包的分解和重构,得到4幅不同频段的图像,从而有效地增加原表情图像的数据量;采用修正的LBP算法对人脸表情图像进行特征提取,并通过稀疏表示模型优化其特征向量,有效地降低传统LBP直方图的维数,提高人脸表情识别率,二次修正的LBP算法鲁棒性好;构建基于神经网络的多分类器模型,融合多特征多分类器的输出,有效地提高表情特征分类的准确性和稳定性。研究结果表明:与传统LBP算法对比,本算法用于人脸表情的识别时,其识别率得到较大幅度提高,算法鲁棒性好。 Based on the low discrimination rate induced by the high dimension of image histogram and the binary data sensitivity to noise on the traditional local binary pattern (LBP) operators, the optimization of rich data, construction and recognition feature vector for the facial expression feature were improved after analyzing the principle of LBP operator. The original facial expression image was decomposed and reconstructed with wavelet packet to get 4 images at different frequency bands which effectively increase the data amount of original image. The LBP algorithm was adapted to extract features from face images and its eigenvector was optimized by using the sparse representation model, which effectively reduces the dimension of the traditional LBP histogram and improves the facial expression recognition, and as a result, the algorithm is robust. The multi-classifier was modeled based on the neural network model and decision fusion was implemented for the output of the multiple features classifier, which improves the accuracy and stability of expression feature classification. The results show that this algorithm is suitable for facial expression recognition compared with the traditional LBP algorithm and the recognition rate is improved significantly, and the algorithm is robust.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第5期1503-1509,共7页 Journal of Central South University:Science and Technology
基金 湖南省自然科学基金资助项目(12GJ6055)
关键词 LBP算子 自动识别 鲁棒性 纹理 LBP operator automatic identification robustness texture
  • 相关文献

参考文献16

  • 1Mehrabian A, Russell J A. An approach to environmental psychology[M]. Cambridge: MIT Press, 1974: 101-156.
  • 2Andrew J, Calder A, Burton M, et al. A principal component analysis of facial expressions[J]. Vision Research, 2004, 41: 1179-1208.
  • 3周晓彦,郑文明,邹采荣,赵力.基于特征融合和模糊核判别分析的面部表情识别方法[J].中国图象图形学报,2009,14(8):1615-1620. 被引量:5
  • 4支瑞聪,阮秋琦.基于多尺度分析矩特征的人脸表情识别[J].信号处理,2009,25(5):692-696. 被引量:2
  • 5HAN Hu, SHAN Shiguang, CHEN Xilin, et al. A comparative study on illumination preprocessing in face recognition[J]. Pattern Recognition, 2013, 46(6): 1691-1699.
  • 6XIE Xudong, Lain K M. Facial express recognition based on shape and texture[J]. Pattern Recognition, 2009, 42:1003-1011.
  • 7Wright J, Ma Yi, Mairal J, et al. Sparse Representation for computer vision and pattern recognition[J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044.
  • 8Baraniuk R, Candes E, Elad M. Applications of sparse representation and compressive sensing[J]. Proceedings of the IEEE, 2010, 98(6): 906-909.
  • 9Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (2): 210-227.
  • 10张娟,詹永照,毛启容,邹翔.基于Gabor小波和稀疏表示的人脸表情识别[J].计算机工程,2012,38(6):207-209. 被引量:17

二级参考文献75

  • 1姜璐,舒华忠,章品正.Hu矩和Zernike矩在表情识别应用中的比较[J].洛阳大学学报,2004,19(2):14-17. 被引量:2
  • 2周建中,何良华.基于DWT-DCT-SVM的人脸表情识别[J].数据采集与处理,2006,21(1):64-68. 被引量:10
  • 3郑志洵,杨建刚.大规模训练数据的支持向量机学习新方法[J].计算机工程与设计,2006,27(13):2425-2426. 被引量:14
  • 4Mehrabian A. Communication without words [ J ]. Psychology Today. 1968,2(4) :53-56.
  • 5Ekamn P. , Friesen W V.. Facial action coding system (FACS) : manual [ M ]. Consulting Psychologists Press, 1978.
  • 6M. K. Hu. Visual pattern recognition by moment invariants [ J ]. IRE Trans. Inform. Theory 1962,8 : 179-187.
  • 7M. Teagur. Image analysis via the general theory of moments [ J] ,J. Opt. Soc. Am. 1980,70:920-930.
  • 8C. H. Teh, R. T. Chin. On image analysis by the methods of moments [ J ]. IEEE Trans. PAMI 1988,10:496-513.
  • 9Noraini A. J. , P. Raveendran, and N. Selvanathan. A comparative analysis of feature extraction methods for face recognition system[ C]. International conference on new techniques in pharmaceutical and biomedical research, 2005. 176-181.
  • 10Zhu Y, de Silva L C, Ko C C. Using moment invariants and HMM in facial expression recognition [ C ]. Proceedings 4^th IEEE Southwest Symposium,2000.2-4.

共引文献75

同被引文献45

  • 1宋伟,赵清杰,宋红,樊茜.基于关键块空间分布与Gabor滤波的人脸表情识别算法[J].中南大学学报(自然科学版),2013,44(S2):239-243. 被引量:7
  • 2TEJA G P, RAVI S. Face Recognition Using Subspaces Techniques [ C ] //Recent Trends in Information Technology (ICRTIT), 2012 International Conference on. Chennai, India: IEEE, 2012 : 103-107.
  • 3SELLAHEWA H, JASSIM S A. Image-Quality-Based Adaptive Face Recognition [ J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(4) : 805-813.
  • 4LIU Ding, DING Xiaoqing, FANG Chi. Continuous Pose Normalization for Pose-Robust Face Recognition [ J ]. Signal Processing Letters, 2013, 20(1): 91-94.
  • 5FALTEMIER, TIMOTHY C, KEVIN W, et al. A Region Ensemble for 3-D Face Recognition [ J ]. IEEE Transactions on Information Forensics and Security, 2008, 3 ( 1 ) : 62-73.
  • 6FALTEMIER, TIMOTHY C, KEVIN W, et al. Using Multi-Instance Enrollment to Improve Performance of 3D Face Recognition [J]. Computer Vision and Image Understanding, 2008, 112 (2) : 114-125.
  • 7WANG J,m, YIN Lijun, WEI Xiaozhou, et al. 3D Facial Expression Recognition Based on Primitive Surface Feature Distribution [ C] //Computer Vision and Pattern Recognition. [ S. 1. ] : IEEE, 2006 : 1399-1406.
  • 8KYONG I CHANG, KEVIN W, PATRICK J FLYNN. Multiple Nose Region Matching for 3D Face Recognition under Varying Facial Expression [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(10) : 1695-1700.
  • 9IOANNIS A KAKADIARIS, GEORGIOS PASSALIS, GEORGE TODERIC, et al. Three-Dimensional Face Recognitionin the Presence of Facial Expressions: An Annotated Deformable Model Approach [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(4): 642-649.
  • 10AJMAL S MIAN, MOHAMMED BENNAMOUN, ROBYN OWENS. An Efficient Multimodal 2D-3D Hybrid Approach to Automatic Face Recognition [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(11) : 1927-1943.

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部