期刊文献+

K2&HC结构学习算法 被引量:5

K2 & HC Structure Learning Algorithm
下载PDF
导出
摘要 贝叶斯网络理论在人工智能领域发挥着重要作用。贝叶斯网络从数据中学习知识的能力使得它在医学、故障诊断、预测等领域的应用迅速发展起来。结构学习算法成为贝叶斯网络的重要研究方向,它能够有效分析变量之间依赖关系,合理挖掘数据和知识。K2算法评分性能突出,而爬山算法能有效弥补K2评分法的解空间过于复杂的问题。论文结合K2评分函数和爬山策略,提出了K2&HC算法。同时,K2&HC算法在爬山策略中融入了回溯原理,解决了贝叶斯结构学习算法中存在的收敛于局部最优的问题,合理优化了算法的性能。同K2和K2SA算法进行仿真对比,得出在精度和收敛速度综合性能上K2&HC表现突出的结论。 Bayesian network plays an important role in the field of artificial intelligence .The capability of learning knowledge from data makes it develop rapidly in medicine ,fault diagnosis ,forecasting and other fields .Structure learning al-gorithm of Bayesian network becomes an important research area ,which can effectively analyze dependencies between varia-bles and discover knowledge and data properly .Hill-Climbing strategy can reduce the complex solution space and improve the performance of structure learning algorithm .At the same time ,the K2 algorithm is outstanding on the performance of sco-ring .Combined the scoring function of K2 with the efficient Hill-Climbing strategy ,the K2&HC algorithm is proposed . Meanwhile ,Backtracking principle integrates into the search strategy to solve the problem about the structure learning algo-rithm converging to a local optimum ,which can optimize the performance of the algorithm .Contrast with K2 and K2SA sim-ulation ,the conclusions are made that K2&HC algorithm is outstanding on the comprehensive performance of the accuracy and convergence rate .
出处 《计算机与数字工程》 2014年第7期1137-1140,1145,共5页 Computer & Digital Engineering
关键词 K2算法 爬山法 评分搜索 贝叶斯网络 结构学习 K2 algorithm hill-climbing search-and-score Bayesian network structure learning
  • 相关文献

参考文献10

  • 1Cheng J, Greiner R, Kelly J, et al. Learning Bayesian Networks from Data:An Information Theory Based Approaeh[J]. Artificial Intelligence, 2002, 137 (1/2) : 43-90.
  • 2Gurovskii M Z, Bidyuk P I, Terent'ev A N. Methods of Constructing Bayesian Based on Scoring Functions [J]. Cybermetics and System Analysis, 2008, 44 (2) : 219-224.
  • 3刘大有,王飞,卢奕南,薛万欣,王松昕.基于遗传算法的Bayesian网结构学习研究[J].计算机研究与发展,2001,38(8):916-922. 被引量:43
  • 4张亮,章兢.改进遗传优化的贝叶斯网络结构学习[J].计算机系统应用,2011,20(9):68-72. 被引量:3
  • 5金焱,胡云安,张瑾,黄隽.K2与模拟退火相结合的贝叶斯网络结构学习[J].东南大学学报(自然科学版),2012,42(A01):82-86. 被引量:9
  • 6Massimiliano Mascherini, Federico M, Stefanin. Using Weak Prior Information on Structures to Learn Bayes- ian Networks[J]. Springer-Verlag Berlin Heidelberg, 2007 : 413-420.
  • 7Cooper F G, Herskovits E. A Bayesian Method for the Induction of Probabilistic Networks from Data[J]. Ma- chine Learning, 1992,9(4) : 309-347.
  • 8GeorgeF.LUGER.人工智能[M].史忠植,等,译.北京:机械工业出版社.2006:96-103.
  • 9金焱,胡云安,张瑾,宋艳波.互信息与爬山法相结合的贝叶斯网络结构学习[J].计算机应用与软件,2012,29(9):122-125. 被引量:12
  • 10D. M. Chickering. Learning Bayesian networks is NP-complete[C]//Proceedings of AI and Statistics, 1995:8-12.

二级参考文献40

共引文献63

同被引文献60

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部