期刊文献+

Complex Interpolation of Weighted Besov and Lizorkin–Triebel Spaces 被引量:1

Complex Interpolation of Weighted Besov and Lizorkin–Triebel Spaces
原文传递
导出
摘要 We study complex interpolation of weighted Besov and Lizorkin–Triebel spaces.The used weights w0,w1 are local Muckenhoupt weights in the sense of Rychkov.As a first step we calculate the Calder′on products of associated sequence spaces.Finally,as a corollary of these investigations,we obtain results on complex interpolation of radial subspaces of Besov and Lizorkin–Triebel spaces on Rd. We study complex interpolation of weighted Besov and Lizorkin–Triebel spaces.The used weights w0,w1 are local Muckenhoupt weights in the sense of Rychkov.As a first step we calculate the Calder′on products of associated sequence spaces.Finally,as a corollary of these investigations,we obtain results on complex interpolation of radial subspaces of Besov and Lizorkin–Triebel spaces on Rd.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第8期1297-1323,共27页 数学学报(英文版)
基金 Supported by the DFG Research Center Matheon"Mathematics for key technologies"in Berlin
关键词 Muckenhoupt weights local Muckenhoupt weights weighted Besov and Lizorkin-Triebel spaces radial subspaces of Besov and Lizorkin-Triebel spaces complex interpolation Calderon products Muckenhoupt weights, local Muckenhoupt weights, weighted Besov and Lizorkin-Triebel spaces, radial subspaces of Besov and Lizorkin-Triebel spaces, complex interpolation, Calderon products
  • 相关文献

参考文献47

  • 1Andersen, K. F., John, R. T.: Weighted inequalities for vector-valued maximal functions and singular integrals. Studia Math., 69, 19-31 (1980/81).
  • 2Bennett, C., Sharpley, R.: Interpolation of Operators, Academic Press, Boston, 1988.
  • 3Bergh, J., LSfstrSm, J.: Interpolation Spaces. An Introduction, Springer-Verlag, New York, 1976.
  • 4Bownik, M.: Duality and interpolation of anisotropic Triebel-Lizorkin spaces. Math. Z., 259(1), 131-169 (2008).
  • 5Bownik, M., Ho, K.-P.: Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces. Trans. Amer. Math. Soc., 358(4), 1469- 1510 (2006).
  • 6Brudnyi, Yu. A., Kruglyak, N. Ya.: Interpolation Functors and Interpolation Spaces, North Holland, Am- sterdam, 1991.
  • 7Bui, H.-Q.: Weighted Besov and Triebel spaces: Interpolation by the real method. Hiroshima Math. J., 12(3), 581-605 (1982).
  • 8Bui, H.-Q.: Characterizations of weighted Besov and Triebel-Lizorkin spaces via temperatures. Y. Funct. Anal., 55(1), 39-62 (1984).
  • 9Bui, H.-Q., Paluszyfiski, M., Taibleson, M. H.: A maximal function characterization of weighted Besov- Lipschitz and Triebel-Lizorkin spaces. Studia Math., 119(3), 219 -246 (1996).
  • 10Bui, H.-Q., Paluszyfiski, M., Taibleson, M. H.: Characterization of the Besov Lipschitz and Triebel- Lizorkin spaces. The case q < 1. J. Fourier Anal. Appl., 3, 837-846 (1997).

同被引文献6

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部