摘要
We study complex interpolation of weighted Besov and Lizorkin–Triebel spaces.The used weights w0,w1 are local Muckenhoupt weights in the sense of Rychkov.As a first step we calculate the Calder′on products of associated sequence spaces.Finally,as a corollary of these investigations,we obtain results on complex interpolation of radial subspaces of Besov and Lizorkin–Triebel spaces on Rd.
We study complex interpolation of weighted Besov and Lizorkin–Triebel spaces.The used weights w0,w1 are local Muckenhoupt weights in the sense of Rychkov.As a first step we calculate the Calder′on products of associated sequence spaces.Finally,as a corollary of these investigations,we obtain results on complex interpolation of radial subspaces of Besov and Lizorkin–Triebel spaces on Rd.
基金
Supported by the DFG Research Center Matheon"Mathematics for key technologies"in Berlin