期刊文献+

基于El-Nabulsi分数阶模型的广义Birkhoff系统Noether对称性研究 被引量:9

Noether symmetries of generalized Birkhoff systems based on El-Nabulsi fractional model
下载PDF
导出
摘要 为了进一步揭示力学系统的对称性与守恒量之间的内在关系,基于El-Nabulsi分数阶模型提出并研究了广义Birkhoff系统的Noether定理。首先,提出分数阶广义El-Nabulsi-PfaffBirkhoff原理,建立广义El-Nabulsi-Birkhoff方程。其次,基于El-Nabulsi-Pfaff作用量在无限小变换下的不变性,给出广义Birkhoff系统Noether对称性的定义和判据。最后,提出广义Birkhoff系统的Noether定理。该文研究结果可进一步应用于完整和非完整约束系统。 To further reveal the inner relationships between the symmetries and conserved quantities of mechanical systems,a Noether's theorem of generalized Birkhoff systems is proposed and studied based on El-Nabulsi fractional model. Firstly,a generalized El-Nabulsi-Pfaff-Birkhoff fractional principle is presented, and generalized El-Nabulsi-Birkhoff equations are established; secondly, based on the invariance of the El-Nabulsi-Pfaff action under the infinitesimal transformation,the definitions and criteria of the Noether symmetries of generalized Birkhoff fractional systems are given; finally, a Noether's theorem for generalized Birkhoff fractional systems is proposed. The research results may be applied to systems with holonomic or non-holonomic constraints.
作者 张毅 丁金凤
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2014年第3期409-413,共5页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(10972151 11272227)
关键词 力学系统 对称性 守恒量 El-Nabulsi分数阶模型 广义BIRKHOFF系统 NOETHER定理 无限小变换 完整约束系统 非完整约束系统 mechanical systems symmetries conserved quantities El-Nabulsi fractional model generalized Birkhoff systems Noether's theorem infinitesimal transformation holonomic constraint systems non-holonomic constraint systems
  • 相关文献

参考文献13

  • 1Riewe F.Nonconservative Lagrangian and Hamiltonian mechanics[J].Physical Review E,1996,53(2):1890-1899.
  • 2Riewe F.Mechanics with fractional derivatives[J].Physical Review E,1997,55(3):3581-3592.
  • 3Agrawal O P.Formulation of EulerLagrange equations for fractional variational problems[J].Journal of Mathematical Analysis and Applications,2002,272(1):368-379.
  • 4Atanackovi T M,Konjik S,Pilipovi S et al.Variational problems with fractional derivatives:Invariance conditions and Nther’s theorem[J].Nonlinear Analysis:Theory,Methods and Applications,2009,71(5-6):1504-1517.
  • 5Malinowska A B,Torres D F M.Introduction to the fractional calculus of variations[M].London,UK:Imperial College Press,2012.
  • 6ElNabulsi A R.A fractional approach to nonconservative Lagrangian dynamical systems[J].Fizika A,2005,14(4):289-298.
  • 7ElNabulsi A R.Necessary optimality conditions for fractional actionlike integrals of variational calculus with RiemannLiouville fractional derivatives of order(α,β)[J].Mathematical Methods in the Applied Sciences,2007,30(15):1931-1939.
  • 8ElNabulsi A R,Torres D F M.Fractional actionlike variational problems[J].Journal of Mathematical Physics,2008,49(5):053521.
  • 9ElNabulsi A R.Fractional actionlike variational problems in holonomic,nonholonomic and semiholonomic constrained and dissipative dynamical systems[J].Chaos,Solitons & Fractals,2009,42(1):52-61.
  • 10Herzallah M A E,Muslih S I,Baleanu D,et al.HamiltonJacobi and fractional like action with time scaling[J].Nonlinear Dynamics,2011,66(4):549-555.

同被引文献47

引证文献9

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部