期刊文献+

无人机飞行异常振动信号采集方法研究 被引量:5

Unmanned Aerial Vehicle(uav) Flight Abnormal Vibration Signal Acquisition Method
下载PDF
导出
摘要 在无人机飞行过程中,存在大量的异常振动环境,需要对振动心境进行实时报警。利用传统模型进行异常振动信号采集,受到多信号属性纠缠的影响,降低了采集的准确性。提出基于多特征属性集成算法的无人机飞行异常振动信号采集方法。采集大量的无人机飞行异常信号,并计算上述异常信号之间的关联性。对上述信号进行连续小波变换,提取无人机飞行异常信号的特征,并对提取的特征向量进行归一化处理。建立多特征属性集成模型,实现无人机飞行异常振动信号的采集。实验结果表明,利用改进算法进行无人机飞行异常振动信号采集,能够极大的提高采集的准确性。 In the process of unmanned aerial vehicle (uav) flight, there are a large number of abnormal vibration environment, the need for real time alarm vibration state of mind. Using the traditional model of abnormal vibration signal acquisition, affected by multiple signal properties of entanglement, reduces the accuracy of the collection. Based on multiple attributes integration algorithm of unmanned aerial vehicle (uav) flight abnormal vibration signal acquisition method. Collecting a large number of unmanned aerial vehicle (uav) flight abnormal signal and calculating the correlation between the abnormal signal. To continuous wavelet transform of the signal, the characteristics of the unmanned aerial vehicle (uav) flight of anomaly signal, and the normalized processing to extract the feature vector. Multiple attributes integration model, realizes the unmanned aerial vehicle (uav) flight abnormal vibration signal acquisition. The experimental results show that the use of improved algorithm for unmanned aerial vehicle (uav) flight abnormal vibration signal acquisition, can greatly improve the accuracy of the collection.
作者 郑勇
出处 《科技通报》 北大核心 2014年第7期184-187,共4页 Bulletin of Science and Technology
关键词 无人机 异常振动信号 信号采集 abnormal vibration signals signal acquisition
  • 相关文献

参考文献5

二级参考文献28

  • 1钱锋,徐麟文.知识发现中的聚类分析及其应用[J].杭州师范大学学报(自然科学版),2001,5(1):34-37. 被引量:16
  • 2何彬彬,方涛,郭达志.基于不确定性的空间聚类[J].计算机科学,2004,31(11):196-198. 被引量:8
  • 3丁艳辉,王洪国,高明,谷建军.一种基于矩阵的关联规则挖掘新算法[J].计算机科学,2006,33(4):188-189. 被引量:13
  • 4Agrawa R, Imielinski T, Swami A. Mining association rules between sets of items in large databases[C].//Proc, of ACM SIGMOD International Conference on Management of Date. Washington DC,1993 : 207-216.
  • 5Park J S, Ming-Syan C, Philip S Y. An Effective Hash Based Algorithm for Mining Association Rules[C].// Proc of ACMSIGMOD. 1995 : 175-185.
  • 6Brin S, Motwai R, Ullman J D, et al. Dynamic Itemset Counting and Implication Rules for Market BasketData [C].//Proc. of ACM SIGMOD Conference on Management of Data. 1997:265-276.
  • 7Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules in Large Databaes[C].//Proc. of 1994 International Conference on Very Large Databases. 1994:487-499.
  • 8Savasere S, Omiecinski E, Navathe S. An Efficient Algorithm for Mining Association Rules in Large Databases[C].//Proc. of 21^St VLDB. 1995 : 432-444.
  • 9Dunkel B, Soparkar N. Data Organization and Access for Efficient Data Mining[C].//Proc. of 15th IEEE Intl. Conf. on Data Engineering. 1999 : 522-529.
  • 10Han J, Fu Y J. Mining Multiple-Level Association Rules in Large Database[J]. IEEE Trans. on Knowledge and Data Engineering, 1999,11(5) : 798-805.

共引文献219

同被引文献64

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部