期刊文献+

基于数据场的量化关联规则挖掘研究与实现 被引量:3

RESEARCH AND IMPLEMENTATION OF QUANTITATIVE ASSOCIATION RULES MINING BASED ON DATA FIELD
下载PDF
导出
摘要 目前,对布尔型关联规则的挖掘研究已较成熟,而对量化关联规则的挖掘研究相对较少,并且采用的挖掘方法多是将量化属性进行离散化处理,进而转化为布尔型关联规则进行挖掘。但传统的对量化属性离散化处理的方法存在区间划分过硬的问题,因此提出一种基于数据场的量化关联规则挖掘方法。该方法避免了区间划分过硬问题,同时也充分考虑了数据集中数据的非完备性以及每个数据对数据挖掘任务所发挥的不同作用。实验证实了该方法的有效性。 At present, the research on Boolean association rule mining has been quite mature, while the research on quantitative association rule mining is relatively rarer, and most of the mining methods used are to carry out diseretisation treatment on quantify properties, then further transform the quantitative association rule to Boolean association rule for mining. However, traditional discretisation processing method of quantitative attributes has the problem of tough interval division. Therefore, we present a data field-based quantitative association rules mining method, it prevent the tough interval division problem, and at the same time fully considers the incompletion of data in dataset and the different roles of each data in data mining task. The validity of this method is testified by the experiments.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第7期40-42,58,共4页 Computer Applications and Software
基金 内蒙古高等教育科学重点项目(NJZZ11140) 内蒙古自然科学基金项目(2012MS0611)
关键词 数据挖掘 量化关联规则 数据场 聚类分析 Data mining Quantitative association rules Data field Cluster analysis
  • 相关文献

参考文献3

二级参考文献26

共引文献43

同被引文献29

  • 1曲守宁,董彩云,徐德军,吴桐.关联规则算法研究及其在教学系统中的应用[J].计算机系统应用,2005,14(4):20-23. 被引量:5
  • 2时百胜,刘宗田,余泓.一种挖掘最小蕴涵规则集的通用算法[J].计算机应用与软件,2007,24(9):187-188. 被引量:1
  • 3SHEYDAEI N, SARAEE M, SHAHGHOLIAN A. A novel feature se- lection method for text classification using association rules and cluste- ring[ J]. Journal of Information Science, 2015, 41(1) : 3 - 15.
  • 4RANI B K, GOVARDHAN A. DC (Drought Classifier): forecasting and classification of drought using association rules[ C]// Proceedings of the 3rd International Conference on Frontiers in Imelligent Compu- ting-Theory and Applications. Berlin: Springer, 2015:123 - 130.
  • 5NAULAERTS S, MEYSMAN P, BITTREMIEUX W, et al. A prim- er to frequent itemset mining for bioinformatics [ J]. Briefings in Bioinformatics, 2015, 16(2) :216 -318.
  • 6韩家炜.数据挖掘-概念与技术[M].2版.北京:机械工业出版社,2006:230-239.
  • 7ORDONEZ C. A model for association rules based on clustering [ C]// SAC'05: Proceedings of the 2005 ACM Symposium on Ap- plied Computing. New York: ACM, 2005:545 -546.
  • 8LENT B, SWAMI A, WIDOM J. Clustering association rules[ C]// Proceedings of the 13th International Conference on Data Engineer-ing. Piscataway: IEEE, 1997:220-231.
  • 9WANG K, XU C, LIU B. Clustering transactions using large items[C]// CIKM'99: Proceedings of the 8th International Conference on Information and Knowledge Management. New York: ACM, 1999:483 -490.
  • 10KOH Y S, PEARS R. Transaction clustering using a seeds based approach[ C]//Proceedings of the 12th Pacific-Asia Conference Ad- vances in Knowledge Discovery and Data Mining, LNCS 5012. Ber- lin: Springer, 2008:916 -922.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部