期刊文献+

基于Gabor特征融合和LSSVM的人脸识别算法 被引量:11

FACE RECOGNITION ALGORITHM BASED ON GABOR FEATURES FUSION AND LEAST SQUARE SUPPORT VECTOR MACHINE
下载PDF
导出
摘要 针对Gabor特征维数高难题,提高光照人脸的识别性能,提出一种基于Gabor特征融合和最小二支持向量机的人脸识别算法(Gabor-LSSVM)。首先采用Gabor滤波器提取人脸图像的多尺度和多方向特征,并将相同尺度不同方向的特征融合,初步降低特征维数;然后采用核主成分分析对融合特征进行选择,进一步降低特征维数;最后采用最小支持向量机建立分类器对人脸进行识别,并采用Yale B和PIE人脸库进行仿真测试。结果表明Gabor-LSSVM的人脸识别正确率和识别效率都得到了提高。 In order to solve the problem of Gabor in its high feature dimensionality and to improve the recognition performance in illumination condition, we propose a new face recognition method which is based on Gabor features fusion and least square support vector machine (Gabor-LSSVM). First, it uses Gabor filter to extract muhi-scale and multi orientation features of face images, and fuses the features in same scale but different directions to reduce the dimensionality of features; then it uses kernel principal component analysis to select fusion features to further reduce feature dimensionality; finally it uses support vector machine to establish the classifier to recognise faces. The simulation tests are carried out on Yale-B and PIE fac'e database, results show that the Gabor-LSSVM improves both the accuracy and efficiency of face recognition.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第7期191-194,225,共5页 Computer Applications and Software
关键词 复杂光照 人脸识别 GABOR特征 最二小乘支持向量 特征融合 Complex illumination Face recognition Gabor features Least square support vector machine Features fusion
  • 相关文献

参考文献7

二级参考文献77

  • 1付国江,王少梅,刘舒燕,李宁.含边界变异的粒子群算法[J].武汉理工大学学报,2005,27(9):101-103. 被引量:10
  • 2马晓燕,杨国胜,范秋凤,王应军.基于Gabor小波和二维主元分析的人脸识别[J].计算机工程与应用,2006,42(10):55-57. 被引量:11
  • 3陈伏兵,杨静宇.分块PCA及其在人脸识别中的应用[J].计算机工程与设计,2007,28(8):1889-1892. 被引量:26
  • 4聂祥飞,郭军.利用Gabor小波变换解决人脸识别中的小样本问题[J].光学精密工程,2007,15(6):973-977. 被引量:20
  • 5Zhao W,Chellappa R,Philips P J,et al.Face recognition:a litera- ture survey[J].ACM Computing Surveys, 2003,35 (4) : 399-458.
  • 6Lin Kezheng,Xu Ying,Zhong Yuan.Using 2DGabor values and kernel fisher discriminant analysis for face recognition[C]//Proceed- ings of the 2nd International Conference on Information Sci- ence and Engineering,2010:7624-7627.
  • 7Turk M, Pentland A.Eigenfaces for recognition[J].Journal of Cog- nitive Neuroscience, 1991,3 ( 1 ) : 72-86.
  • 8Gottumukkal R,Asari V K.An improved face recognition tech- nique based on modular PCA approach[J].Pattem Recognition Let- ters, 2004,25 (4) : 429-436.
  • 9Sankaran P, Asari V K.A multi-view approach on modular PCA for illumination and pose invariant face recognition[C]//Proceed- ings of the 33rd Applied Imagery Pattern Recognition Work- shop,USA,2004:165-170.
  • 10Wang Xiaojie.Modular PCA based on Within-Class median for face recognition[C]//Proceedings of the 3rd IEEE International Conference on Computer Science and Information Technology, China, 2010: 52-56.

共引文献130

同被引文献96

引证文献11

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部