期刊文献+

基于改进CPD算法的SPECT-B超甲状腺图像配准 被引量:1

Registration of SPECT image and B-type ultrasound image based on improved CPD algorithm
下载PDF
导出
摘要 为了获得更多甲状腺肿瘤的诊断信息,文章提出了一种基于改进CPD算法的甲状腺肿瘤的SPECT图像和B超图像自动配准方法。首先,将参考图像(SPECT图像)和待配准图像(B超图像)分别通过阈值分割和图割的方法提取轮廓特征点;然后,用遗传算法和粒子群算法相结合的优化算法对CPD的权重参数进行自动寻优,利用改进的CPD算法对提取出的两组特征点进行匹配,得到两幅图像的空间变换参数;最后,将待配准图像按所求得的变换参数旋转、平移,从而获得配准后图像。实验结果表明,该方法能实现SPECT与B超甲状腺肿瘤图像的良好配准,具有参数少、精度高、鲁棒性好等特点。 In order to obtain more information on the diagnosis of thyroid tumor, an automatic registration meth-od of SPECT image and B-type ultrasound image of thyroid tumour based on improved CPD algorithm are pro-posed. Threshold segmentation and GCBAC segmentation are used to extract the outline’s feature points of the refer-ence image(SPECT image)and input image(B-type ultrasound image).A new hybrid algorithm with combined GA and PSO is proposed to search optimization for CPD. The improved CPD algorithm is used to match both groups of feature points,and then the space transformation parameters of two images are obtained. The input image is rotated and shifted by the space parameters,then the registration image is obtained. The experiments show that the method can realize good registration of the thyroid SPECT image and B-type ultrasound image , and this meathod has the ad-vantages of less parameter, high precision and good robust.
出处 《激光杂志》 CAS CSCD 北大核心 2014年第7期19-22,共4页 Laser Journal
基金 河北省卫生厅科研基金项目(20120395) 河北省教育厅科学技术研究重点项目(ZD20131086)
关键词 甲状腺肿瘤 图像配准 SPECT图像 B超图像 CPD Thyroid tumor Image registration SPECT image B-type ultrasound image CPD
  • 相关文献

参考文献11

  • 1Mei-sen Pan,Jing-tian Tang,Qiu-sheng Rong et al. Medical image registration using modified iterative closest points [J]. International Journal for Numerical Methods in Biomed- ical Engineering,2011,27(8): 1150-1166.
  • 2Chui H and Rangarajan A. A new point matching algorithm for non-rigid registration[J]. Computer Vision and Image Understanding, 2003, 89(2): 114-141.
  • 3Belongie S, Malik J, and Puzicha J. Shape matching and object recognition using shape contexts [J]. IEEE Transactions on Pat- ternAnalysis and Machine Intelligence, 2002, 24(4): 509-522.
  • 4Gope C and Kehtarnavaz N. Affine invariant comparison of point-sets using convex hulls and hausdorff distances[J]. Pattern Recognition, 2007, 40(1): 309-320.
  • 5Myronenko A and Song X B. Point-set registration: coherent point drift[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12): 2262-2275.
  • 6李超,李光耀,谭云兰,徐祥龙.基于Powell算法与改进遗传算法的医学图像配准方法[J].计算机应用,2013,33(3):640-644. 被引量:11
  • 7Arpita Das,Mahua Bhattacharya. Affine-based registration of CT and MR modality images of human brain using multires- olution approaches: comparative study on genetic algorithm and particle swarm optimization[J]. Neural Computing & Applications,2011,20(2):223-237.
  • 8Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C].In:Proc of the sixth international symposium on Mi- cro Machine and Human Science,Nagoya,Japan, 1995:39-43.
  • 9Dawei Zhou,Xiang Gao,Guohai Liu et al.Randomization in particle swarm optimization for global search ability[J].Ex- pert Systems With Applications,2011,38(12). 15356-15364.
  • 10席海峰,田超.基于SVR的宽基线图像匹配方法[J].重庆邮电大学学报(自然科学版),2013,25(2):197-202. 被引量:5

二级参考文献31

  • 1江军,於文雪,舒华忠.鲍威尔和模拟退火优化算法结合的多分辨率三维图像配准[J].生物医学工程研究,2004,23(3):176-178. 被引量:6
  • 2张汗灵,杨帆.基于互信息和混合优化算法的多模医学图像配准[J].湖南大学学报(自然科学版),2006,33(1):117-120. 被引量:11
  • 3BAUMBERG A. Reliable feature matching across widely separated views [ C ]//Proc. Int. Conf. Computer Vision and Pattern Recognition. Hilton Head, USA: IEEE Com- puter Society, 2000: 774-781.
  • 4LINDEBERG T. Feature detection with automatic scale selection[ J]. International Journal of Computer Vision, 1998, 30 (2) : 79-116.
  • 5MIKOLAJCZYK K, SCHMID C. Indexing Based on Scale Invariant Interest Points [ C ]//Proc. Int. Conf. Computer Vision Vancouver. Vancouver, BC, Canada:IEEE Com- puter Society, 2001:525-531.
  • 6MIKOLAJCZYK K, SCHMID C. An Affine Invariant In- terest Point Detector[ C ]//Proc. Seventh European Conf. Computer Vision Copenhagen. Copenhagen, Denmark : Springer-Verlag Berlin Heidelberg, 2002: 128-142.
  • 7MATAS J, CHUM O, URBAN M,et al. Robust Wide Baseline Stereo from Maximally Stable Extremal Regions [C]//Proc. 13th British Machine Vision. Cardiff Uni- versity, British: British Machine Vision Association and Society, 2002:384-393.
  • 8MIKOLAJCZYK K, SCHMID C. A Performance Evalua- tion of Local Descriptors [ J ]. IEEE Trans Pattern Anal Mach Intell, 2005, 27(10) :1615-1629.
  • 9HARTLEY R, ZISSERMAN A. Multiple View Geometry in Computer Vision [ M ]. Cambridge, UK : Cambridge University Press, 2000:25-27.
  • 10MYATF D, BISHOP J M, CRADDOCK R. NAPSAC High Noise, High Dimensional Robust Estimation--It' s in the Bag [ C ]// Proc. British Machine Vision. Cardiff University, British: British Machine Vision Association and Society, 2002: 458467.

共引文献14

同被引文献6

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部