摘要
基于线弹性和小变形假设理论,通过引入比例系数(直圆柔性球铰槽口间距与切割半径倍数之比)并利用其结构对称的特点,推导得到了形式较为简洁的直圆柔性球铰柔度矩阵各子元素的解析柔度计算公式。利用有限元仿真软件验证了所推公式的正确性,并绘制了相应的误差曲线。结果表明:当比例系数小于0.2时,直圆柔性球铰各柔度计算公式的相对误差限均在11%以内;随着比例系数的增加,除沿x向的拉压柔度C11误差较小外,其他柔度计算公式的误差均呈增加的趋势,最大误差为30%。实验结果显示理论分析与仿真结果基本趋于一致,验证了直圆柔性球铰各柔度解析式的正确性。本文的研究内容为直圆柔性球铰在实际应用中的结构设计和参数优化奠定了理论基础。
On the basis of hypothesis theories of linear elasticity and small deformation,the analytical compliance calculation formula of each sub-element in the compliance matrix of a right-circular flexure spherical hinge was deduced.The formula is succinct in form by introducing the proportional coefficient(The ratio of right-circular flexure spherical hinge groove spacing and double cutting radius)and utilizing the symmetrical feature of the structure.The correctness of the formula was verified by adopting the finite element simulation software,and its error curves were drawn corresponding to the simulated values.The results show that the relative errors of serial compliance calculation formula for the right-circular flexure spherical hinge are within 11% when the proportional coefficient is less than 0.2.With the increase of the proportional coefficient,the errors of the othercompliance calculation formulas have a trend of increasing with maximum of 30% except the error of tension and compression compliance C11 along the direction x.The experimental results show that the theoretical analysis is in agreement with the simulation results,which verifies the correctness of the proposed formula.These results will lay a key theoretical basis for the structural design and parametric optimization of the right-circular flexure spherical hinges in practical applications.
出处
《光学精密工程》
EI
CAS
CSCD
北大核心
2014年第7期1857-1863,共7页
Optics and Precision Engineering
基金
国家973重点基础研究发展计划资助项目(No.2013CB733000)
国家自然科学基金资助项目(No.51305383)
教育部高等学校博士学科点专项科研基金资助项目(No.20131333120007)
河北省自然科学基金资助项目(No.2012203130)
关键词
直圆柔性球铰
柔度矩阵
比例系数
仿真
误差曲线
right-circular flexure hinge compliance matrix proportional coefficient simulation error curve