期刊文献+

一种改进的变步长前后向追踪重建算法

An Improved Variable Step Size Forward-Backward Pursuit Algorithm in Compressive Sensing
下载PDF
导出
摘要 压缩感知中前后向追踪(forward-backward pursuit,FBP)算法能有效缩短重建时间,但一旦迭代过程中前向、后向步长确定,将导致计算时间增长,影响重构效率,因此,提出一种改进的FBP算法,称为变步长前后向追踪算法(variable step size forward-backward pursuit,VSSFBP).该算法引入判决阈值和等比因子,考虑到估计的稀疏度远小于真实稀疏度,选择较大迭代步长,减少迭代次数,缩短运行时间;同时考虑到当估计的稀疏度达到一定值时,减小迭代步长,减慢逼近的速度,提高信号重构精度.仿真结果表明:VSSFBP算法在保证重构效果的同时,明显缩短了重构时间.当图像压缩比为0.45时,信噪比提高了1 dB,峰值信噪比提高了0.8 dB,重构时间降低为原来FBP算法的42.04%.与同类算法相比,在保持较高的峰值信噪比和信噪比的条件下,VSSFBP算法消耗的时间大大缩短,重构速度更快,重构信号更精确. There is a forward-backward pursuit(FBP) algorithm in the compressed sensing(CS) which can efficiently decrease framing time. However once forward step and backward step were determined during iteration , computing time would increase and framing efficiency would be affected. In this paper , an improved variable step size forward-backward pursuit (VSSFBP) algorithm was proposed. By integrating the ideas of double thresholds and variable step size, the proposed algorithm could decrease the computation time and control the accuracy of reconstruction without knowledge about the sparsity of the signal. And because the estimated sparsity is smaller than the true sparsity , larger iteration step was chosen to reduce the number of iterations to shorting the running time. Simultaneously considering unknown sparsity, iteration step was reduced and approaching speed was slowed down to improve the accuracy of sig-nal reconstruction. The simulation results showed that the proposed algorithm can reduce the iteration times with better reconstruction performances. When the compression ratio of the object is 0.45, this algorithm has 1 dB gain in the sig-nal-to-noise ratio and 0.8 dB gain in the peak signal-to-noise ratio over FBP algorithm , and the reconstruction time is only 42.04% of FBP algorithm. In a word, keeping in higher PSNR and SNR, VSSFBP algorithm has greatly re-duced time-consuming and increased reconstruction speed compared with other algorithms. Simultaneously the algo-rithm makes reconstructed signal more precise, so the prospect of it′s application is very broad.
作者 邹丽 唐文娟
出处 《南通大学学报(自然科学版)》 CAS 2014年第2期7-12,共6页 Journal of Nantong University(Natural Science Edition) 
基金 南通市应用研究计划项目(BK2013052)
关键词 变步长 前后向追踪 重建算法 压缩感知 匹配追踪 variable step size forward-backward pursuit reconstruction algorithm compressed sensing matching pursuit
  • 相关文献

参考文献15

  • 1Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4) : 1289-1306.
  • 2Ma Jianwei. Improved iterative eurvelet thresholding for compressed sensing and measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60 ( 1 ) : 126- 136.
  • 3Yang Zai, Zhang Cishen, Deng Jun, et al. Orthonormal ex- pansion l-minimization algorithms for compressed sensing[J]. IEEE Transactions on Signal Processing, 2011, 59 (12) :6285-6290.
  • 4董小亮,赵生妹,郑宝玉.压缩感知重构算法在“鬼”成像中的应用研究[J].信号处理,2013,29(6):677-683. 被引量:11
  • 5Zhang Lei, Xing Mengdao, Qiu Chengwei, et al. Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing [J ]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48 (10) :3824-3838.
  • 6Yang Jungang, Thompson J, Huang Xiaotao, et al. Ran- dora-frequency SAR imaging based on compressed sensing [J]. IEEE Transactions on Geoscience and Remote Sens- ing, 2013, 51(2):983-994.
  • 7Fyhn K, Jensen T L, Larsen T, et al. Compressive sensing for spread spectrum receivers [J ]. IEEE Transactions on Wireless Communications, 2013, 12(5) :2334-2343.
  • 8叶蕾,杨震,孙林慧,郭海燕.行阶梯观测矩阵下语音压缩感知观测序列的Volterra+Wiener模型研究[J].信号处理,2013,29(7):816-822. 被引量:3
  • 9Tropp J A, Gilbert A C. Signal recovery from random mea- surements via orthogonal matching pursuit [J]. IEEE Trans- actions on Information Theory, 2007, 53 (12):4655-4666.
  • 10Needell D, Vershynin R. Uniform uncertainty principleand signal recovery via regularized orthogonal matching pursuit [J ]. Foundations of Computational Mathematics, 2009, 9(3) :317-334.

二级参考文献25

  • 1Donoho D. Compressed sensing [ J ]. IEEE Transactions on Information Theory, 2006, 52(4) : 1289-1306.
  • 2Tsaig Y, Donoho D. Extensions of compressed sensing [ J ]. Signal Processing, 2006, 86 (3) : 533-548.
  • 3Chen S, Donoho D, Saunders M. Atomic decomposition by basis pursuit[J]. SIAM REVIEW, 2001, 43(1) :129-159.
  • 4Candes E. Compressive sampling[ A]. Proceedings of the International Congress of Mathematicians [ C ] . Madrid, Spain,European Mathematioal Society Publishing House, 2006 : 1433-1452.
  • 5Andrecut M, Este R A, Kauffman S A. Competitive opti- mization of compressed sensing [ J ]. Journal of Physics A : Mathematical and Theoretical, 2007, (40) : 299-305.
  • 6Donoho D. For most underdetermined systems of linear e- quations, the minimal l2 norm near-solution approximates the sparsest near-solution [ EB/OL ]. http://www-stat. stanford, edu/donoho/Reports, 2007.
  • 7Candes E, Tao T. Decoding by linear programming [ J]. IEEE, Trans Inf Theory, 2005(51 ) : 4203-4215.
  • 8Giacobello D, Christensen M G, Murthi M N, Jensen S H, Moonen M. Retrieving sparse patterns using a com- pressed sensing framework : Applications to speech coding based on sparse linear prediction [ J ]. Signal Processing Letters, IEEE,2010, 17(1) : 103-106.
  • 9Luo H, Pottie G. Routing explicit side information for data compression in wireless sensor networks [ A ]. Int Conf on Distirbuted Computing in Sensor Systems (DCOSS) [ C ]. Marina Del Rey, CA,V K Prasanna Kumar, 2005:75-88.
  • 10Takhar D, Lsaka J, Wakin M. A new compressive ima- ging camera architecture using optical domain compres- sion [ A]. Proceedings of SPIE[ C ]. Bellingham WA, In- ternational Society for Optical Engineering,2006:6065.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部