期刊文献+

基于中间值的最大间距准则特征提取方法 被引量:4

Extraction of Maximum Margin Criterion Features Based on Median
下载PDF
导出
摘要 针对最大间距准则算法中训练样本类内平均值并不能对类内中心做精确估计的问题,提出一种基于中间值的最大间距准则特征提取方法.首先应用样本中间值代替样本的平均值来重新定义类间散度矩阵和类内散度矩阵,然后根据最大间距准则思想得到最优投影矩阵,最后利用三阶近邻分类器进行分类识别.在ORL、Yale和FERET人脸图像库上的仿真实验结果表明,该方法不仅提高了人脸识别率,而且具有较强的鲁棒性. Aimed at the problem that the intra-class average of training samples in the maximum margin criterion algorithm fails to make accurate estimations of the intra-class center, a new feature extraction method based on the median maximum margin criterion was developed. The sample median was adopted in place of the sample average to redefine inter-class divergence matrix and intra-elass divergence matrix,on the basis of the principle of the maximum margin criterion the optimal projection matrix was obtained,and the third-order neighboring classifier was utilized for classification and identification. Experimental results on face databases ORL, Yale and FERET show that the proposed method improves the human face recognition rate, having strong robustness.
作者 程国
出处 《甘肃科学学报》 2014年第4期21-24,54,共5页 Journal of Gansu Sciences
基金 陕西省教育厅科研计划项目(2013JK0597) 陕西省教育科学"十二五"规划课题(SGH12443) 商洛学院科研基金项目(12SKY010)
关键词 中间值 最大间距准则 人脸识别 特征提取 Median Maximum margin criterion Face recognition Feature extraction
  • 相关文献

参考文献10

二级参考文献85

共引文献40

同被引文献48

  • 1任靖,李春平.最小距离分类器的改进算法——加权最小距离分类器[J].计算机应用,2005,25(5):992-994. 被引量:30
  • 2陈才扣,杨静宇.Fisher大间距线性分类器[J].中国图象图形学报,2007,12(12):2143-2147. 被引量:12
  • 3Belhumcour P N, Hespanha J P, Kriegman D J. Eigenface vs fisherfaces: recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):711-720.
  • 4Swets D L, Weng J J. Using discriminant eigenfeature for image retrieval [-J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 831-836.
  • 5Li Haifeng, Jiang Tao, Zhang Keshu. Efficient and robust feature extraction by maximum margin criterion [J]. Transactions on Neural Networks, 2006, 17( 1 ) : 1157-1165.
  • 6Gulmezoglu M B, Dzhafarov V, Keskin M, et al. A novel approach to isolatedword recognition[J]. IEEE Transactions on Speech and Audio Processing, 1999, 7(6) : 620-628.
  • 7Gulmezoglu M B, Dzhafarov V, Barkana A. The common vector approch and its relation to principal component analysis [J]. IEEE Transactions on Speech and Audio Processing, 2001,9(6):655-662.
  • 8Cevikalp H, Neamtu M, Wilkes M, et al. Discriminative common vectors for face recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 (1) : 4-13.
  • 9Turk M, Pentland A . Face recognition using eigenfaces [ C ] // Pro-ceedings of IEEE Computer Society Cor^erence on Computer Visionand Pattern Recognition. Maui,Hawaii, USA : IEEE Comput SocPress, 1991:586 - 591.
  • 10Yang J,Zhang D, Yang J Y, et al. Globally maximizing, locallyminimizing: unsupervised discriminant projection with applicationsto face and plam biometrics [ j]. IEEE Trans Pattern Anal MachIntell, 2007,29(4) :650 - 664.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部