期刊文献+

视频监控图像的运动模糊方向估计 被引量:2

Motion blurred direction estimation for video monitor image
下载PDF
导出
摘要 模糊图像复原是安防监控领域的一项重要技术,为提高模糊方向的估计准确度从而提高复原清晰度,对模糊图像的频谱分析、方向提取以及干扰抑制等方法进行研究.通过频谱图细化分块消除由边缘截断效应导致的十字亮线干扰.通过Radon变换归一化降低该算法固有的对角线干扰.最后,修正频谱图中条纹倾斜角度与模糊方向的偏差,以提高任意高宽比图像模糊方向的估计准确度.实验结果表明,避免了模糊方向估计曲线在0°、90°、45°(135°)方向出现干扰峰值,在非对角线方向能较准确地估计模糊方向,误差约4~6°.能有效抑制十字亮线干扰和对角线干扰,且适用于任意高宽比图像. Motion target detection plays an important role in object tracking and traffic monitoring fields.For improving the estimation accuracy of motion direction,and thereby increasing restoration resolution,some research of blurred image spectrum analysis,blurred direction detection and interfe rence suppression were conducted.The interference of bright cross in the spectrum caused by edge truncation effect was eliminated through partitioning spectrum image.The diagonal interference was reduced by normalized Radon transform.For improving estimation accuracy of blurred direction of any ration image,the factor aspect ratio was used to modify the relation between tilt angle of the dark stripe and motion direction angle.The experiment demonstrates that this algorithm can well avoid interference peak appeared in 0°,90°,45°(135°) direction of blurred direction estimation curve,and well estimate blurred direction in non diagonal with about 4~ 6 °error.Overall,this algorithm can suppress the interferences of bright cross and diagonal effectively,and applies to any aspect ratio.
出处 《液晶与显示》 CAS CSCD 北大核心 2014年第4期580-585,共6页 Chinese Journal of Liquid Crystals and Displays
基金 哈尔滨市科技创新人才研究专项资金(No.2013RFQXJ090) 黑龙江省博士后科研启动项目(No.LBHQ12069) 哈尔滨理工大学青年拔尖创新人才培养计划 国家自然科学基金(No.61005035)
关键词 视频监控 运动模糊 模糊方向估计 归一化Radon变换 video monitor motion blur blurred direction estimation normalized radon transform
  • 相关文献

参考文献13

二级参考文献56

  • 1段彩艳,李一民,潘晓露,魏志强.基于频谱分析的退化图像模糊类型识别[J].云南大学学报(自然科学版),2009,31(S2):9-11. 被引量:2
  • 2高梅,陈树越.匀速直线运动模糊图像的恢复[J].计算机工程与应用,2004,40(31):59-60. 被引量:7
  • 3贺卫国,黎绍发.匀速直线运动模糊长度的精确估计[J].计算机应用,2005,25(6):1316-1317. 被引量:19
  • 4安志勇,王晓华,赵珊,周利华.一种图像纹理特征检索算法[J].西安电子科技大学学报,2007,34(3):409-413. 被引量:3
  • 5Lipton A. Fujiyoshi H, Patil R S. Moving target classification and tracking from real-time video [J]. IEEE Work- shop Application of Computer Vision, 1998, 17(9):8-14.
  • 6Barron J. Fleet D , Beauchemin S. Performance of optical flow techniques[J]. International J. Computer Vision, 1994, 12(1):42-77.
  • 7Jain R. Difference and accumulative difference pictures in dynamic scene analysis[J].Image and Vision Computing, 1984,2(2) :99-108.
  • 8GONZALEZ R C.数字图像处理(MATLAB版)[M].阮秋琦等译.北京:电子工业出版社,2005.
  • 9Lagendijk R, Tekalp A M, Biemond J. Maximum Likelihood Image and Blur Identification:a Unifying Approach[J]. Optical Engineering, 1990, 29 (5) : 422-435.
  • 10Moshe B E, Nayar S K. Motion-Based Motion Deblurring[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(6):689-698.

共引文献148

同被引文献30

  • 1张航,罗大庸.一种改进的全变差盲图像复原方法[J].电子学报,2005,33(7):1288-1290. 被引量:13
  • 2CHANT F, WONG C K. Total variation blind de convolution [J]. IEEE Tran. Image Processing, 1998,7(3) :370-375.
  • 3FERGUS R, SINGH B, HERTZMANN A, etal.. Removing camera shake from a single photograph [J]. ACM Trans. on Graphics, 2006, 25(3) :787- 794.
  • 4SHAN Q, JIA J Y, AGARWALA A. High-quality motion deblurring from a single image[J]. ACM Trans. onGraphics,2008, 27(3), 73:1-73:10.
  • 5KRISHNAN D, FERGUS R. Fast image deconvo- lution using hyper-laplacian priors[C]. In Proceed- ings of Neural Information Processing Systems, 2009:1033-1041.
  • 6CHO S, LEE S Y. Fast motion deblurring[C] SIC, GRAPH ASIA 2009 : 1-8.
  • 7XU L, jIA J. Two-phase kernel estimation for ro bust motion debluring[C]. ECCV, 2010: 157-170.
  • 8JIANHONG SH. Weber's law and weberized TV restoration [J]. Physica D, 2003,175 : 241- 251.
  • 9OSHER S,RUDIN L I. Feature oriented image en- hancement using shock filters [J]. SlAM Journal on Numerical Analysis, 1990, 27(4): 919-940.
  • 10ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries [J]. IEEE Transactions on Image Processing, 2006, 15(12) : 3736-3745.

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部