期刊文献+

纳米石墨烯片/石蜡复合相变蓄热材料的热性质研究 被引量:20

Thermal property of nano-GnPs/paraffin heat storage phase change composite material
原文传递
导出
摘要 采用两步法,通过磁力搅拌和超声振荡,制备了以纳米石墨烯片GnPs为导热增强相的纳米GnPs/石蜡复合相变蓄热材料。红外光谱分析结果表明GnPs与石蜡之间未发生化学反应,仅是简单的物理复合作用。差示扫描量热分析(DSC)表明,复合材料的相变温度几乎保持不变,但其相变潜热随纳米GnPs含量的增加呈降低趋势,在质量分数为1%时,熔化和凝固过程的相变潜热较纯石蜡分别下降约9.6%和10.1%。此外,复合材料的导热系数随GnPs质量分数增加而增加,在质量分数为2%时,导热系数相对提高率为34.2%,表现出良好的强化导热效果。 Using nanographite (nano-GnPs) as the enhanced thermal conductivity fillers,nano-GnPs/paraffin phase change composite materials were prepared with a two-step method through the magnetic stirring and ultrasonic vibration. The infrared spectroscopy analysis showed that there was no chemical reaction between nano-GnPs and paraffin,just a physical interaction between them DSC results revealed that the phase change temperatures of nano-GnPs/paraffin were al- most constant. However, the latent heats of nano-GnPs/paraffin shifted to lower values compared to those of pure paraffin. For composites with 1 wt ~ nano-GnPs, the phase change latents with melting and solidification processes would be re- duced by 9.6% and 10. 1M, respectively. Meanwhile, the thermal conductivity of the composite PCMs shown to increase with the raising mass fraction. At the mass fraction of 2 %, the relative thermal conductivity enhancement was nearly 34. 2 %, which showed a favourable enhanced thermal conductivity results.
出处 《化工新型材料》 CAS CSCD 北大核心 2014年第7期105-107,共3页 New Chemical Materials
基金 国家自然科学基金(51206071) 中国博士后科学基金资助项目(2013M542125) 湖南省自然科学基金项目(13JJ6040)
关键词 石蜡 纳米石墨烯片 复合蓄热材料 相变潜热 导热系数 paraffin, nano-GnPs, heat storage composite material, phase change latent, thermal conductivity
  • 相关文献

参考文献5

二级参考文献67

  • 1吴志根,赵长颖,顾清之.多孔介质在高温相变蓄热中的强化换热[J].化工学报,2012,63(S1):119-122. 被引量:16
  • 2邢澄清,迟广山,阮德水,贺洛夫,李德华,张太平,张道圣.多元醇二元体系固-固相变贮热的研究[J].太阳能学报,1995,16(2):131-137. 被引量:47
  • 3Bentz D P,Turpin R.Potential applications of phase changematerials in concrete technology[J].Cement&Concrete Com-posites,2007,29(7):527-532.(下转第75页).
  • 4Baetens R,Jelle B P,Gustavsen A.Phase change materials forbuilding applications:A state-of-the-art review[J].Energy andBuildings,2010,42(9):1361-1368.
  • 5Khudhair A M,Farid M M.A review on energy conservationin building applications with thermal storage by latent heat u-sing phase change materials[J].Energy Conversion and Man-agement,2004,45(2):263-75.
  • 6Hadjieva M,Stoykov R,Filipova T.Composite salt-hydrateconcrete system for building energy storage[J].Renewable En-ergy,2000,19(1-2):111-115.
  • 7Tyagi V V,Kaushik S C,Tyagi S K,et al.Development ofphase change materials based microencapsulated technology forbuildings:A review[J].Renewable and Sustainable EnergyReviews,2011,15(2):1373-1391.
  • 8Cabeza L F,Castello′n C,Nogue′s M,et al.Use of microen-capsulated PCM in concrete walls for energy savings[J].Ener-gy and Buildings,2007,39(2):113-119.
  • 9Schossig P,Henning H M,Gschwander S,et al.Microencap-sulated phase-change materials integrated into construction ma-terials[J].Solar Energy Materials&Solar Cells,2005,89(2-3):297-306.
  • 10Anil Ival O,Sircar K.Development of phase change technology for heating and cooling of residential buildings and other applications[A].Proceedings of the 28th Intersociety Energy Conversion Engineering Conference[C],1993,(2):134-140.

共引文献94

同被引文献173

引证文献20

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部