期刊文献+

基于改进动态规划的MR图像左心室分割 被引量:4

Left Ventricle MRI Segmentation Based on Developed Dynamic Programming
下载PDF
导出
摘要 为了在MR图像中精确提取左心室外膜,本文提出一种基于改进动态规划的分割方法。先用Otsu阈值法分割心内膜,再在此基础上设计一种改进的动态规划方法来寻找一条闭合的最小代价路径作为心外膜边界。该方法的关键在于路径代价函数的设计,它包括边界灰度因子、梯度因子和形状因子。3个因子之间的权重系数用混沌粒子群算法优化,同时,为了避免心外膜越过心包脂肪,设置了代价无穷大的心外膜"禁区"。将该方法在138幅图像上的分割结果与金标准及相关算法进行比较,结果表明该方法具有更高的分割精度和鲁棒性。 In order to accurately extract the epicardium of the left ventricle from cardiac magnetic reso-nance images, a method based on developed dynamic programming is proposed. First, the endocardiumis segmented by the Otsu method. Then, the epicardium is derived by designing an improved dynamicprogramming method to find a closed path with minimum local cost. The key to this method is the de-sign of the local cost function, which consists of three factors: boundary gradation, boundary gradientand shape features. The weighting coefficients of the three factors are obtained by a chaos particle swarmoptimization method. A comparison with other segmentation methods and the gold standard is providedbased on 138 images. The experimental results show that the method proposed has high accuracy and ro-bustness.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2014年第2期35-41,共7页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(61302192) 湖北省自然科学基金资助项目(2012FFC13401) 中央高校专项基金资助项目(CZQ13010)
关键词 左心室 分割 动态规划 混沌粒子群 left ventricle segmentation dynamic programming chaos particle swarm optimization
  • 相关文献

参考文献17

  • 1NAMBAKHSH C M S,YUAN Jing,PUNITHAKUMAR K. Left ventricle segmentation in MRI via convex relaxed distribution matching[J].Medical Image Analysis,2013,(08):1010-1024.
  • 2PETITJEAN C,DACHER J N. A review of segmentation methods in short axis cardiac MR images[J].Medical Image Analysis,2011,(02):169-184.
  • 3HADHOUD M M A,ELADAWY M I,FARAG A. Left ventricle segmentation in cardiac MRI images[J].American Journal of Biomedical Engineering,2012,(03):131-135.
  • 4张建伟,方林,陈允杰,詹天明,李小田.基于活动轮廓模型的左心室MR图像分割[J].电子学报,2011,39(11):2670-2673. 被引量:13
  • 5王根,张建伟,陈允杰,罗春燕,王宇.一种各向异性GVF模型的心脏左心室MR图像分割模型[J].计算机辅助设计与图形学学报,2010,22(11):1887-1891. 被引量:8
  • 6SCHWEIGER M,DORN O,ZACHAROPOULOS A. 3D level set reconstruction of model and experimental data in diffuse optical tomography[J].Optics Express,2010,(01):150-164.
  • 7刘利雄,马忠梅,赵恒博,姚宇华,张麒.一种基于主动轮廓模型的心脏核磁共振图像分割方法[J].计算机学报,2012,35(1):146-153. 被引量:24
  • 8王元全,贾云得.一种心脏核磁共振图像左室壁内、外膜分割方法[J].软件学报,2009,20(5):1176-1184. 被引量:8
  • 9MA Zhen,JORGE R N M,TAVARES J M R S. A shape guided C-V model to segment the levator ani muscle in axial magnetic resonance images[J].Medical Engineering & Physics,2010,(07):766-774.
  • 10SONG En-min,XU Sheng-zhou,XU Xiang-yang. Hybrid segmentation of mass in mammograms using template matching and dynamic programming[J].ACADEMIC RADIOLOGY,2010,(11):1414-1424.

二级参考文献18

  • 1秦安,冯前进,陈武凡.MR心脏序列图像左心室内外壁联合分割和时序追踪新方法[J].中国图象图形学报,2008,13(1):80-88. 被引量:5
  • 2王元全,贾云得.一种新的心脏核磁共振图像分割方法[J].计算机学报,2007,30(1):129-136. 被引量:23
  • 3Kass M,Witkin A,Terzopulos D.Snake active contour models[J].International Journal of Computer Vision,1987,1(4):321-331.
  • 4Caselles V,Kimmel R,Sapiro G.Geodesic active contours[J].International Journal of Computer Vision,1997,22(1):61-79.
  • 5Li C,Xu C,Gui C,et al.Levelset evolution without re-initialization:A new variational formulation .IEEE Conference on Computer Vision and Pattern Recognition (CVPR) .San Diego:IEEE,2005,1:430-436.
  • 6Chan T,Vese L.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277.
  • 7Li C,Kao C,Gore J,Ding Z.Implicit active contours driven by local binary fitting energy[J].IEEE International Conference on Computer Vision and Pattern Recognition (CVPR),2007.1-7.
  • 8Zhang Kai hua,Song Huihui,Zhang Lei.Active contours driven by local fitting energy[J].Pattern Recognition,2010,43(4):1199-1206.
  • 9Zhang Kai hua,Zhang Lei,et al.Active contours with selective local or global segmentation: A new formulation and level set method[J].Image and Vision computing,2010,28(4): 668-676.
  • 10Li Wang,Li Chunming,Sun Quansen,et al.Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation[J].Computerized Medical Imaging and Graphics,October 2009,33(7):520-531.

共引文献45

同被引文献26

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部