期刊文献+

降低可见光通信不均匀限幅正交频分复用系统非线性限幅失真的功率分配方法 被引量:16

Power Allocation Method for Reducing Nonlinearity Clipping Distortion in Asymmetrically Clipped Optical Orthogonal Frequency Division Multiplexing Based Visible Light Communication
原文传递
导出
摘要 针对可见光通信中不均匀限幅光正交频分复用(ACO-OFDM)系统发光二极管(LED)非线性限幅失真严重的问题,提出了一种降低LED非线性限幅失真的最优功率分配方法。基于原信号直接叠加非线性限幅失真成分的限幅处理模型,分析了ACO-OFDM系统中的LED非线性限幅失真;利用有效信噪比来衡量限幅失真,将限幅失真转化为有效信噪比分析;基于有效信噪比最优的原则给出了光功率约束下降低限幅失真的最优偏置信号和ACO-OFDM信号功率分配。仿真结果表明,当信道的信噪比较低时,信道噪声起主导作用;当信道的信噪比较高时,限幅失真起主导作用。在光功率约束下若不考虑偏置信号的影响而直接取其值为LED最小输出功率限制,则系统误码率(BER)在信道信噪比大于40dB的情况下也始终大于10-2,而采用最优功率分配时可以保证系统具有较好的误码率性能,当光功率约束为200mW和250mW时,分别需要24dB和27dB的信道信噪比即可使得系统的误码率低于10-3。 To handle the significant light emitting diode (LED) nonlinearity clipping distortion problem in asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) based visible light communication systems, an optimal power allocation method for reducing the clipping distortion is proposed. The LED nonlinear clipping distortion of the system is analyzed based on the clipping process model that original signal directly addes nonlinear clipping distortion components. The effective signal to noise ratio (SNR) is defined to measure the clipping distortion, and the clipping distortion analysis is converted into SNR analysis. Finally, the optimal bias signal and ACO-OFDM signal power allocation under optical power constraints based on the principle of effective SNR optimum are proposed. Simulation results show that the channel noise dominants at low channel SNR value while clipping distortion dominates at high channel SNR value. Bit error rate (BER) is greater than 10 2 even the channel SNR value beyond 40 dB if the bias power is selected as the minimum output power limit value of LED without considering, while optimal power allocation can effectively reduce the LED nonlinear clipping distortion to improve the BER performance. Channel SNR values of 24 dB and 27 dB are enough to insure that BER is below 10-3 under the optical power constraints of 200 mW and 250 mW, respectively.
出处 《光学学报》 EI CAS CSCD 北大核心 2014年第7期46-53,共8页 Acta Optica Sinica
基金 国家863计划(2013AA013603) 东南大学移动通信国家重点实验室开放基金(2013D09)
关键词 光通信 可见光通信 不均匀限幅光正交频分复用 限幅失真 功率分配 optical communications visible light communication asymmetrically clipped optical orthogonalfrequency division multiplexing clipping distortion power allocation
  • 相关文献

参考文献19

  • 1H Elgala, R Mesleh, H Haas. Indoor optical wireless eommunication: potential and state of-the art [J].IEEE Communications Magazine, 2011, 49(9): 56-62.
  • 2D J Fernandes Barros, J M Kahn. Optical modulator optimization for orthogonal frequency-division multiplexing [J]. J Lightwave Technol, 2009, 27(13): 2370-2378.
  • 3J Armstrong, B J C Schmidt, D Kalra, et al.. Performance of asymmetrically clipped optical OFDM in AWGN for an intensity modulated direct detection system [ C ]. IEEE Global Telecommunications Conference, 2006. 1-5.
  • 4D J F Barros, S K Wilson, J M Kahn. Comparison of orthogonal frequency-division multiplexing and pulse-amplitude modulation in indoor optical wireless links [ J ]. IEEE Transactions on Communications, 2012, 60(1): 153-163.
  • 5J Armstrong, A J Lowery. Power efficient optical OFDM [J]. IEEE Electronics Letters, 2006, 42(6): 370-372.
  • 6H Elgala, R Mesleh, H Haas. A study of LED nonlinearity effects on optical wireless transmission using OFDM [C]. IEEE Wireless and Optical Communicalions Networks, 2009. 1-5.
  • 7X Li, J Vucic, V Jungnickel, et al.. On the capacity of intensity- modulated direct detection systems and the information rate of ACO-OFDM for indoor optical wireless applications [J]. IEEE Transactions on Communications, 2012, 60(3): 799-809.
  • 8S K Wilson, J Armstrong. Transmitter and receiver methods for improving asymmetrically-clipped optieal OFDM [J].IEEE Transactions on Wireless Communication, 2009, 8 (9) : 4561 - 4567.
  • 9X Li, R Mardling, J Armstrong. Channel capacity of IM/DD optical communication systems and of ACO-OFDM [C]. IEEE International Conference on Communications, 2007. 2128- 2133.
  • 10R Mesleh, H Elgala, H Haas. On the performance of different OFDM based optical wireless communication systems [J]. IEEE Journal of Optical Communications and Networking, 2011, 3(8) : 620-628.

二级参考文献3

共引文献19

同被引文献153

  • 1梁志国,孙瞡宇.周期性任意波形总失真度的精确评价[J].计量学报,2005,26(2):176-180. 被引量:13
  • 2丁德强,柯熙政,李建勋.VLC系统的光源布局设计与仿真研究[J].光电工程,2007,34(1):131-134. 被引量:38
  • 3H Elgala, R Mesleh, H Haas. Indoor optical wireless communication: Potential and state-of-the-art [J]. IEEE Communications Magazine, 2011, 49(9): 56-62.
  • 4T Komine, M Nakagawa. Fundamental analysis for visible-light communication system using LED lights [J]. IEEE lransactions on Consumer Electronics, 2004, 50(1): 100-107.
  • 5C Kottke, K Habel, L Grobe, et al: Single-channel wireless transmission at 806 Mbit/s using a white-light LED and a PIN-based receiver [C]. 2012 14th International Conference on Transparent Optical Networks (ICTON), 2012. 1-4.
  • 6D C O' Brien, L Zeng, H Le-Minh, et al: Visible light communications: Challenges and possibilities[C]. IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 2008. 1-5.
  • 7M Yoshino, S Haruyama, M Nakagawa. High-accuracy positioning system using visible LED lights and image sensor [C]. IEEE Radio and Wireless Symposium, 2008. 439-442.
  • 8M S Rahman, M M Haque, K D Kim. Indoor positioning by LED visible light communication and image sensor [J]. International Journal of Electrical and Computer Engineering, 2011, 1(2): 161-170.
  • 9S Zhang, S Watson, J J D McKendry, et al: 1.5 Gbit/s multi-channel visible light communications using CMOS- controlled GaN-based LEDs [J]. J Lightwave Technol, 2013, 31(8): 1211-1216.
  • 10K D Dambul, D C O'brien, G Faulkner. Indoor optical wireless MIMO system with an imaging receiver [J]. IEEE Photon Technol Lett, 2011, 23(2): 97-99.

引证文献16

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部