摘要
In this paper, a 120-fs pulse transmission experiment is carried out using disordered birefringent microstructure fibers with cladding ventages. Through this experiment, it is found for the first time that remarkable Stokes and anti-Stokes waves can also be produced when the central wavelength of the incident pulse is in the normal dispersion regime of the microstructure fiber. The generation of the two waves can be explained by the four-wave mixing phase matching theory. Properties of the two waves under the action of femtosecond laser pulses with different parameters are studied. The results show that the central wavelength of anti-Stokes waves and Stokes waves produced under the two orthogonal polarization states shift by 63 nm and 160 nm, respectively. The strengths and central positions of the two waves in birefringent fibers can be controlled by adjusting the phase match condition and the polarization directions of incident pulses.
In this paper, a 120-fs pulse transmission experiment is carried out using disordered birefringent microstructure fibers with cladding ventages. Through this experiment, it is found for the first time that remarkable Stokes and anti-Stokes waves can also be produced when the central wavelength of the incident pulse is in the normal dispersion regime of the microstructure fiber. The generation of the two waves can be explained by the four-wave mixing phase matching theory. Properties of the two waves under the action of femtosecond laser pulses with different parameters are studied. The results show that the central wavelength of anti-Stokes waves and Stokes waves produced under the two orthogonal polarization states shift by 63 nm and 160 nm, respectively. The strengths and central positions of the two waves in birefringent fibers can be controlled by adjusting the phase match condition and the polarization directions of incident pulses.
基金
Project supported by the National Basic Research Program,China(Grant No.2010CB327604)
the National Natural Science Foundation of China(Grant Nos.60637010,61205084,and 61377100)
the Science and Technology Research and Development Program of Qinhuangdao City,China(Grant No.201101A117)