期刊文献+

基于进化策略的柔性立管防弯器优化设计 被引量:9

Optimization design of bend stiffener based on evolution strategy principle
原文传递
导出
摘要 采用进化策略的优化方法对防弯器的结构进行优化设计,以达到减小结构体积、减轻结构质量的目的.运用进化策略在给定的设计参数范围内对结构进行优化,并通过细长梁模型模拟防弯器和柔性立管的组合结构,检验优化后的结构是否符合设计要求.以防弯器体积为目标函数,将其结构主要几何参数作为变量,在给定的受力条件下,以防弯器弯曲曲率小于允许值为约束条件,对结构进行优化设计.将本文程序的优化结果与不同优化方法的计算结果进行对比,结果表明:本优化方法的收敛性较好,优化效果明显,而且在一定程度上要优于遗传算法的优化效果. The optimization based on evolution strategy was conducted to find the bend stiffener with the smallest volume.The evolutionary strategy within a given range of design parameters to optimize the structure was applied,and then the validity of structure of the slender beam model to simulate the bend stiffener and flexible risers was checked.The optimization design used the volume as the objective function with its mainly geometric parameters as variables to search the smallest structure that the curvature is less than the allowable value under the given conditions.In comparison with other document,it approves that the evolution strategy is excellent,and more effective than genetic algorithm.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第6期48-51,57,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金创新研究群体科学基金资助项目(50921001)
关键词 海洋工程 结构设计 优化 防弯器 进化策略 弹性梁模型 ocean engineering structural design optimization bend stiffener evolution strategy slender beam model
  • 相关文献

参考文献2

二级参考文献17

  • 1Beume N, Naujoks B, Emmerich M. SMS-EMOA: mulitobjective selection based on dominated hypervoi- nme[J]. European Journal of Operational Research, 2007, 181(3): 1653-1669.
  • 2Banu S, Murat K. A favorable weight-based evolu- tionary algorithm for multiple criteria problems[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(2): 191-205.
  • 3Chi K C, Shiu Y Y. An evolutionary algorithm that makes decision based on the entire previous search history[J]. IEEE Transactions on Evolutionary Com- putation, 2011, 15(6): 715-734.
  • 4Goldberg D E. Genetic algorithms in search, optimi- zation and machine learning[M]. Reading: Addison Wesley, 1989.
  • 5Coello C A C. Evolutionary multiobjective optimiza- tion: a historical view of the field[J]. 1EEE Compu- tational Intelligence Magazine, 2006, 1(1) : 28-36.
  • 6Veldhuizen D A V, Lamont G B. Multiobjective evo- lutionary algorithms: analyzing the state-of-the-art [J]. Evolutionary ComplJtation, 2000, 8(2): 125- 147.
  • 7Jones D F, Mirrazavi S K, Tamiz M. Multiobjective metaheuristics: an overview the current state-of-the- art[J]. European Journal of Operational Research, 2002, 137: 1-9.
  • 8Deb K, Pratap A, Agarwai S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2) : 182-197.
  • 9Liu H L, Wang Y, Cheung Y M. A muhiobjective evolutionary algorithm using min-max strategy and sphere coordinate transformation[J]. Intelligent Au- tomation and Soft Computing,2009, 15, 361-384.
  • 10Liu H L, Li X. The multiobjective evolutionary al- gorithrn based on determined weight and sub-region- al search[C]//2009 IEEE Congress on Evolutionary Computation. Norway: IEEE, 2009: 1928-1934.

共引文献14

同被引文献44

引证文献9

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部