期刊文献+

基于最优路径地图和概率边计数值的蚁群算法改进

Improved Ant Colony Optimization Algorithm Based on Global Best Path Map and Probability Edge Count Value
下载PDF
导出
摘要 针对于标准的蚁群算法在问题规模较大情况下收敛速度慢、易早熟的问题,通过引入全局最优路径地图以及概率边计数值的方法,从而实现对于搜索路径当前最优值、全局最优值的启发性和历史的最优值的兼顾,提高了蚁群算法全局最优值查找能力,加快蚁群算法的收敛速度,提出了一个基于最优路径地图和概率边计数值的蚁群算法,通过理论证明改进的蚁群算法可以有效的提高蚁群算法对于旅行商问题的全局最优路径的查找能力以及对于最优值的收敛速度,通过对于不同旅行商问题实例的进行实验,验证了本文提出基于最优路径地图和概率边计数值的蚁群算法的合理性以及相应的理论证明的正确性. Aiming to the problem of standard ant colony optimization (ACO) algorithm easy to prematurity and slow rate of conver- gence in large-scale situation, using the method of introduce of global best path map and probability edge count value which can im- prove iteration speed and the global optimal value searching capacity of the ant colony optimization algorithm , a improved ant colony optimization based on the probability edge count value and global best path map is proposed. Though theoretical derivation, the cor- rectness of improved ant colony optimization algorithm is proofed, and The correctness of theoretical derivation is verified by the ex- periment which is based on different TravelinR Salesman Problem ( TSP) instances.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第8期1831-1836,共6页 Journal of Chinese Computer Systems
基金 国家"八六三"自然科学基金项目(2013AA01A211)项目
关键词 蚁群算法 旅行商问题 概率边计数值 最优路径地图 ant colony optimization algorithm travelling saleman problem probability edge count value global best path map
  • 相关文献

参考文献15

  • 1Colomi A,Dorigo M,Maniczzo V. Distributed optimization by ant colonies[C]. Proceedings of the First European Conference on Ar- tificial Life, 1991,142 : 134-142.
  • 2GambardeUa L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies[C]. Evolutionary Computation, 1996 ,Proceedings of IEEE International Conference on. IEEE,1996:622-627.
  • 3Dorigo M. Optimization, learning and natural algorithms [ D ]. Politccnico di Milano, Italy, 1992.
  • 4Bullnheimer B ,Hartl R F,Strauss C. A new rank based version of the ant system [ J ]. A Computational Study, 1997 : 1 - 16.
  • 5Stutzle T,Hoos H. Improvements on the ant-system:introducing the MAX-MIN ant system[ C]. Artificial Neural Nets and Genetic Algorithms, Springer Vienna, 1998:245-249.
  • 6何小锋,马良.求解0-1背包问题的量子蚁群算法[J].计算机工程与应用,2011,47(16):29-31. 被引量:17
  • 7Colomi A, Dorigo M, Maniezzo V, et al. Ant system for job-shop scheduling[ J]. Belgian Journal of Operations Research, Statistics and Computer Science, 1994,34( 1 ) :39-53.
  • 8Stiitzle T. An ant approach to the flow shop problem[C]. Proceed- ings of the 6th European Congress on Intelligent Techniques & Soft Computing ( EUFIT'98 ), 1998,3 : 1560-1564.
  • 9Toth P, Vigo D. Models,relaxations and exact approaches for the capacitated vehicle muting problem [ J ]. Discrete Applied Mathe- matics, 2002,123 ( 1 ) :487 -512.
  • 10Angelelli E, Grazia Speranza M. The periodic vehicle routing prob lem with intermediate facilities[ J ]. European Journal of Operation- al Research,2002,137(2) :233-247.

二级参考文献40

  • 1丁建立,陈增强,袁著祉.遗传算法与蚂蚁算法融合的马尔可夫收敛性分析[J].自动化学报,2004,30(4):629-634. 被引量:32
  • 2金慧敏,马良.遗传退火进化算法在背包问题中的应用[J].上海理工大学学报,2004,26(6):561-564. 被引量:37
  • 3朱庆保.蚁群优化算法的收敛性分析[J].控制与决策,2006,21(7):763-766. 被引量:24
  • 4Dorigo M,Di Caro G.Ant algorithms for discrete optimization [J]. Artificial Life, 1999,5(2) : 137 - 172.
  • 5Dodgo M,Bonabeau E, Theraulaz G.Ant algorithms and stigmergy[ J ]. Future Generation Computer Systems, 2000, 16(9): 851 - 871.
  • 6Walter Gutjahr J. A graph-based ant system and its convergence [ J]. Future Generation Computer Systems, 2000, 16:873 - 888.
  • 7Bilchev G,Parmee I C. The ant colony metaphor for searching continuous design spaces [A]. Fogarty T. Lecture Notes in Computer Science[C]. Heidelberg: Springer Berlin, 1995.25 - 39.
  • 8Dero J, Siarry P. Continuous interacting ant colony algorithm based on dense heterarchy [ J ]. Future Generation Computer Systems, 2004,5 (20) : 841 - 856.
  • 9Karaboga N, Kalinli A, Karaboga D. Designing digital IIR filters using ant colony optimization algorithm[ J ]. Engineering Application of Artificial InteUigence, 2004,17(2) :301- 309.
  • 10Monmarche N, Venturini G, Slimane M. On how Pachycondyla apicalis ants suggest a new search algorithm[ J]. Future Generation Computer Systems, 2000,16 ( 8 ) : 937 - 946.

共引文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部