期刊文献+

文本分类中的主动多域学习 被引量:3

Multi-Domain Active Learning in Text Classification
下载PDF
导出
摘要 现有主动学习主要着眼于对单个域训练方法的研究,不同域有不同的特征,同时也存在一些隐含的共性.如何从多个域中选择合适数据样本成为多域学习中减少人工标注工作量的关键.本文提出了一个新颖的主动多域学习框架,该框架充分考虑了重复信息,并可从多个域中选择合适的数据样本.该框架首先找到一个包含不同域间隐含共性的共享子空间,然后将所有数据样本分解为公共域部分和个性域部分,其中公共域部分可视为域间的重复信息,该部分在查询时需要被考虑到.最后,将主动多域学习方法与最新的主动学习方法的性能进行了比对,实验结果表明,本文提出的主动多域学习方法在减少人工标注工作量方面有显著作用. The existing active learning methods are mainly focus on training a single domain.Different domains have different characteristics,but there are some implied commonalities.Therefore,how to choose the right data samples from multiple domains becomes the key to reduce the workload of manual tagging in multi-domain learning.This paper presents a novel multi-domain active learning framework.The framework fully considered the duplicate information and selected the appropriate data samples from multiple domains.Firstly,in this framework,a sharing subspace containing implicit commonalities between different domains is found;Then,all the data samples are broken down into the individual domain portions and the public domain portions,and the public domain portions can be considered as the duplicate information between domains which needs to be considered in the query.Finally,the multi-domain active learning methods and the latest active learning methods are compared in terms of performance.The experimental results show that the proposed multi-domain active learning methods are more marked effect in reducing the workload of manual tagging.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第7期108-114,共7页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 主动学习 多域学习 隐含共性 共享子空间 active learning multi-domain learning implicit commonalities sharing subspace
  • 相关文献

参考文献14

  • 1PAN S J, NI X, SUN J T, et al, Cross-Domain Sentiment Classification Via Spectral Feature Alignment [C]//Proceed- ings of the 19th International Conference on World Wide Web. Raleigh: Association for Computer Machinery, 2010: 751-760.
  • 2DAGAN I, ENGELSON S P. Committee-Based Sampling for Training Probabilistic Classifiers [C]. Tahoe City: Pro- ceeding for the 22th Internation Conference on Machine Learning, 1995: 150-157.
  • 3DONMEZ P, CARBONELL J G. Proactive Learning: Cost-Sensitive Active Learning with Multiple Imperfect Oracles [C]//Proceedings of the 17th ACM conference on Information and knowledge management. Napa Valley: Association for Computer Machinery, 2008 : 619- 628.
  • 4BEYGELZIMER A, DASGUPTA S, LANGFORD J. Importance Weighted Active Learning [C]//Proceedings of the 26th Annual International Conference on Machine Learning. Montereal: Association for Computer Machinery, 2009: 49-56.
  • 5CEBRON N, BERTHOLD M R. Active Learning in Parallel Universes [C]//Proceedings of the 19th ACM International Conference on Information and Knowledge Management. Toronto: Association for Computer Machinery, 2010: 1621-1624.
  • 6DREDZE M, KULESZA A, CRAMMER K. Multi-Domain Learning by Confidence-Weighted Parameter Combination [J]. Machine Learning, 2010, 79(1-2): 123-149.
  • 7SHI X, FAN W, REN J. Actively Transfer Domain Knowledge [M]//Machine Learning and Knowledge Discovery in Databases. Berlin: Springer Berlin Heidelberg, 2008 : 342- 357.
  • 8RAI P, SAHA A, DAUME III H, et al. Domain Adaptation Meets Active Learning [C]//Proceedings of the NAACL HLT 2010 Workshop on Active Learning for Natural Language Processing. Los Angeles: Association for Computational Linguistics, 2010: 27-32.
  • 9曹雷,郭嘉丰,白露,程学旗.基于半监督话题模型的用户查询日志命名实体挖掘[J].中文信息学报,2012,26(5):26-32. 被引量:6
  • 10HARPALE A, YANG Y. Active Learning for Multi-Task Adaptive Filtering [C]. Haifax: Proceedings of the 27th In- ternational Conference on Machine Learning (ICML-10), 2010: 431-438.

二级参考文献25

  • 1任纪生,王作英.基于特征有序对量化表示的文本分类方法[J].清华大学学报(自然科学版),2006,46(4):527-529. 被引量:4
  • 2Joachims T. Text Categorization with Support Vector Machines: Learning with Many Relevant Features[C]//In Europearl Conference on Machine Learning (ECML). Chemnitz, Germany: [ s. n. ], 1998:137 - 142.
  • 3Gartner T, Flach P A. WBCsvm Weighted Bayesian Classification based on support vector machine[ C]//18th Int. Conf. on Machine Learning. WiUianstown, USA: [ s. n. ], 2001 : 154 - 161.
  • 4Sindhawani V, Pushpak B, Subrata R. Information Theoretic Feature Crediting in Multiclass Support Vector Machine[C]// 1st SIAM Int. Conf. on Data Mining. Chicago, IL, USA: [ s. n. ] ,2001:1 - 18.
  • 5Lewis D D, Yang Y, Rose T, et al. RCV1 : A New Benchmark Collection for Text Categorization Research[ J ]. Journal of Machine Learning Research,2004(5) :361 - 397.
  • 6谭松波,王月粉.中文文本分类语料库-TanCorpV1.0[DB/OL].http://www.searchforum.org.cn/tansongbo/corpusl.php.
  • 7Sebastiani E Machine Learning in Automated Text Categorization[J]. ACM Comput. Surv., 2002, 34(1): 1-47.
  • 8Salton G. The SMART Retrieval System: Experiments in Automatic Documents Processing[M]. New York, USA: Prentice Hall, 1971.
  • 9Marius Pasca. Weakly-supervised discovery of named entities using Web search queries[C]// Proceedings of the 16th ACM Conference on Information and Knowl- edge Management, 2007: 683-690.
  • 10Jiafeng Guo, Gu Xu, Xueqi Cheng, et al. Named enti- ty recognition in query[C]// Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2009: 267-274.

共引文献26

同被引文献19

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部