期刊文献+

智能化呼吸机呼吸控制硬件平台的研究 被引量:5

The Research on Controlling Platform of Smart Ventilator
下载PDF
导出
摘要 目的:智能化呼吸机是目前医用呼吸机研究的重要方向,对呼吸机提高通气治疗效果,改善病人通气舒适度有着举足轻重的作用,本文提出一种基于嵌入式操作系统的智能化呼吸机呼吸控制硬件平台,为智能化呼吸机呼吸控制算法搭建提供硬件支持。方法:采用双控制器的结构,PIC单片机控制器采集呼吸机通气回路的压力、流量、氧传感器信号,驱动呼吸回路气道控制组件、实现呼吸机各功能组件的实时控制;嵌入式ARM主板控制器搭载Linux操作系统和控制软件接收单片机的呼吸参数以及血气参数监测模块的数据、绘制实时的呼吸参数波形、提供便捷的人机交互控制界面。结果:运用该智能化呼吸控制平台实现了呼吸机的基本通气模式以及触发方式,通过Linux系统上设计的呼吸波形监控界面与FLUKE VT PLUS HF呼吸机检测仪进行呼吸参数及波形比对,验证了平台的可靠性和数据的准确性。结论:该平台能很好地为呼吸机的智能化控制提供硬件支持,采集数据准确,经调试运行可靠,有良好的应用前景。 Objective: The smart ventilator is an important direction for medical ventilator research, it plays an decisive role in improving the effectiveness and comfortability of ventilating treatment. This paper proposes the research on controlling platform of smart ventilator based on an embedded system, which can provide hardware support for further controlling algorithm of smart ventilator. Methods: With double structure of the controller, PIC microchip controller is adopted to collect sensor signal and ful- fill the real-time controlling of ventilator. The embedded main board with Linux and controlling software communicate with PIC Controller to exchange breathing and gas parameter, draw the real-time breath parameter waveform so as to provide a conve-nient GUI interface for human-computer interaction. Results: Ventilating mode and trigger mode are realized by using the plat- form, the reliability of the platform and the accuracy of the data are verified by comparing respiratory parameters and waveforms between the respiratory waveform monitoring interface designed on Linux system and FLUKE VT PLUS HF gas-flow detector. Conclusions: The test result shows this controlling platform can realize the functions of a smart ventilator and has good application perspective.
出处 《中国医学物理学杂志》 CSCD 2014年第4期5048-5053,共6页 Chinese Journal of Medical Physics
基金 上海市科委重点科技攻关项目(11441902302)
关键词 智能化呼吸机 嵌入式控制系统 PIC单片机 血气参数 smart ventilator embedded control system PIC microchip blood and breathing parameter
  • 相关文献

参考文献6

二级参考文献39

共引文献9

同被引文献42

  • 1张玉欣,金江春植,白晶,周振雄.基于PSO_GRNN网络的肺内静态压力值预测方法[J].仪器仪表学报,2020,41(5):174-184. 被引量:9
  • 2黄心正.仪器电路的干扰及其抗干扰措施[J].分析测试仪器通讯,1994,4(1):21-24. 被引量:2
  • 3吕鹏,陈雅楠,曹德森.呼吸机测试仪的研制[J].北京生物医学工程,2006,25(1):70-72. 被引量:8
  • 4方玲,仪垂杰,丛红,周扬民,林海波.呼吸机通气模式综述[J].医疗装备,2006,19(6):1-4. 被引量:14
  • 5SHI Y,REN S,CAI M,et al. Pressure dynamic characteristics ofpressure controlled ventilation system of a lung simulator[J].Comput Math Methods Med,2014,2014(3):287.
  • 6KNOBEL C,KETTERER G,MOLLER K. A concept for modellinglinear lung compliances using a mechanical artificially ventilatedsimulator[C].2013 ICME International Conference on. IEEE,2013:571-574.
  • 7WEST J B. The original presentation of Boyle's law[J].J ApplPhysiol,1999,87(4):1543-1545.
  • 8DAVENPORT D A. Boyle's law[J].J Chem Educ,1979(5):322.
  • 9WANG T,PENG G,KAGAWA T. Determination of flow- ratecharacteristics for pneumatic components using a quasi- isothermaltank with temperature compensation[J].Meas Sci Technol,2010,21(6):065402.
  • 10GIANNELLA-NETOA,BELLIDO C,BARBOSAR B,et al. Designand calibration of unicapillary pneumotachographs[J].J ApplPhysiol,1998,84(1):335-343.

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部