期刊文献+

面向连锁零售业的时间序列预测方法研究 被引量:10

Research on Time Series Forecasting for the Retail Chain
下载PDF
导出
摘要 考虑国内连锁零售业需求预测的现状,以一家典型经营快速消费品的连锁零售食品公司为研究对象,通过分析其现有的门店销售预测和总仓预测模式,借助订货公式找出需求时界,确定预测时段,采用动态优化加权移动平均,自适应指数平滑,综合预测等方法提高预测的准确性,同时检验现有经验模式的可行性。研究结果表明7天移动平均的方法非常适合长期预测,综合预测的方法可以提高预测准确性,但其实施的复杂程度增加。同一种预测方法在不同订货周期预测过程中,误差区别较大,门店销售受诸多因素影响,需求波动较大,不同订货周期的门店应采用不同的预测方法。 Considering the domestic present demand forecasting situation of the retail chain,a typical fast moving consumer goods-selling retail chain on food is taken as a research sample. Through the analysis of present pattern of forecasting in store and commodity center,find out the demand time fence and confirm the forecasting period based on the ordering formula to improve the accuracy of forecasting with usage of dynamic optimizing method of weighted moving average, adaptive exponential smoothing model,integrated forecasting and etc.The feasibility of the present empirical pattern is examined at the same time.This conclusion illustrates the seven-day weighted moving average method is more appropriate for the long period forecasting comparing to the integrated forecasting for the implementation and accuracy.It also indicates the error difference is significant between different ordering period forecasting and the store sales is affected by a lot factors which contribute to the demand fluctuation.Therefore,different forecasting methods should be taken for different ordering period stores.
出处 《工业工程与管理》 CSSCI 北大核心 2014年第3期60-65,71,共7页 Industrial Engineering and Management
基金 国家自然科学基金资助项目(71072035)
关键词 连锁零售 预测 周期 retail chain forecasting period
  • 相关文献

参考文献14

  • 1张晓红,乔骏.连锁零售企业供应链管理中的需求预测[J].商业时代,2012(30):37-38. 被引量:1
  • 2戴亮,孟晶.零售业销售预测方法[J].商场现代化,2011(1):83-85. 被引量:5
  • 3Trigg D W, Leach A G. ExponentialSmoothing with an Adaptive Response Rate [J]. Operation Research, 1967, 18 (1):53-59.
  • 4Gardner E S Jr. Exponential Smoothing: The State of the Art Part II [J]. International Journal of Forecasting, 2006,22 (4): 637-666.
  • 5Bates J M,Granger C W J. The Combination of Forecasts [J]. Operation Research, 1969,20(4): 451-468.
  • 6Zhang F W, Zhou X L. Gray-regression Variable Weight Combination Model for Load Forecasting[C]. Proceedings of International Conference on Risk Management and Engineering Management, 2008 : 311-316.
  • 7Li-li Q, Yan C. An Adaptive Time-variable Weight Combination Forecasting Method for Time Series [ C]. Proceedings of 2006 International Conference on Management Science and Engineering, 2006 : 318-323.
  • 8王高祖,李伟华,徐艳玲.基于神经网络组合模型的软件可靠性评估研究[J].计算机仿真,2010,27(8):176-180. 被引量:7
  • 9Granger C W J, Ramanathan R. Improved Methods of Combining Forecasts [J]. Journal of Forecasting, 1984, (3) : 197-204.
  • 10WackerJ G, Lummus R R. Sales Forecasting for Strategic Resource Planning[J]. International Journal of Operations Production Management, 2002,22 (9) : 1014-1031.

二级参考文献31

  • 1唐炎森.指数平滑预测公式与平滑系数[J].统计与信息论坛,1998,13(1):39-44. 被引量:17
  • 2管建池,肇莹,刘红星.优化神经元激活函数类型的重要性[J].济南大学学报(自然科学版),2005,19(3):282-282. 被引量:2
  • 3吴佑寿.利用输入信号先验知识构造某些分类神经网络的研究[J].中国科学(E辑),1996,26(2):140-144. 被引量:5
  • 4张文治,陈桂生.关于供应链需求管理问题的讨论[J].物流技术,2007,26(7):88-90. 被引量:4
  • 5吴翊 李永乐 等.应用数理统计[M].长沙:国防科技大学出版社,1999..
  • 6D Musa John.Software reliability engineering[M].Beijing,China Machine Press,2003.259-261.
  • 7Michael R Lyu,A Nikora.Applying reliability models more effectively[J].IEEE Software,1992.45-52.
  • 8N Karunanithi and Y K Malaiya.The Scaling Problem in Neural Network for Software Reliability Prediction[C].Proceedings of the Third International Symposium on Software Reliability Engineering,IEEE Computer Society Press,October 1992.76-82.
  • 9M Lu,S Brocklehurst and B Littlewood.Combinations of Predictions Obtained from Different Software Reliability Growth Models[C].Proceedings 10th Annual Software Reliability Symposium,1992.24-33.
  • 10Guo Ping,M R Lyu.A pseudoinverse learning algorithm for feedforward neural networks with stacked generalization applications to software reliability growth data[J].Neuro computing,56,2004.101-121.

共引文献33

同被引文献104

引证文献10

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部