期刊文献+

面向制造领域的三视图模型组件快速检索方法研究 被引量:3

The Research of Fast Retrieval Method for Three-view Model Component in Manufacturing Field
下载PDF
导出
摘要 针对在工业设计海量组件库中快速检索特定三维模型组件的问题,文中结合压缩感知理论给出了一种基于行列与中心点的压缩感知测量过程,由此提出了一种面向制造领域基于三视图的模型组件快速检索方法。利用压缩感知方法提取各组件的三视图的颜色、纹理等测量特征并存入模型库;提取待检索组件的三视图压缩测量特征并与模型库中组件三视图的特征进行相似度计算;对组件三视图间的相似性与中心点的压缩测量特征进行融合,得出模型组件间的整体相似度并输出匹配检索结果。仿真实验表明,算法具有较好的检索性能,在查全率和查准率方面具有一定的优势。 For solving the problem to quickly retrieve a specific three-dimensional component from mas-sive component library in industrial design , it gives a measurement process based on row and center by combining the compressed sensing theory , and proposes a fast retrieval method for three-view model com-ponent in manufacturing field are studied .First, it extracts the measurement features of color and texture from the three-view of each component by compressed sensing method , and saves them into model librar-y.Then, it extracts the measurement features of the three-view component to be retrieved , and matches the similarity with the features of three-view components in model library .Finally, according to the simi-larity between the three-view of model components , it fuses the measurement features of the center and gets the overall similarity between model components and outputs the retrieval result .Experimental results show this method has better retrieval performance and has certain advantage in recall and precision rate .
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期62-68,共7页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 广东省自然科学基金项目资助项目(S2012010008639 10152800001000016 10452800001004185) 广东省教育厅高校优秀青年创新人才培育资助项目(2012LYM_0132) 佛山市科技发展专项基金资助项目(2011AA100051 20121011010070) 2013年佛山科学技术学院优秀青年创新人才培育项目
关键词 压缩感知 三维模型组件 三视图 组件检索 制造领域 compressed sensing three-dimensional model three-view component retrieval manufac-turing field
  • 相关文献

参考文献12

二级参考文献228

共引文献236

同被引文献34

  • 1杨育彬,陈世福,林珲.一种基于颜色连通的图像纹理检索新方法[J].电子学报,2005,33(1):57-62. 被引量:16
  • 2Mohsen Zand,Shyamala Doraisamy,Alfian Abdul Halin.Texture classification and discrimination for region-based image retrieval[J].J.Vis.Comm.Image R,2015,26:305-316.
  • 3Xiaoyu Wang,Ming Yang,Timothee Cour,et al.Contextual Weighting for Vocabulary Tree based Image Retrieval[C].ICCV2011,pp.209-216,in Barcelona,Spain,November,2011.
  • 4Liang Zheng,Shengjin Wang,Ziqiong Liu,et al.Packing and padding:coupled multi-index for accurate image retrieval[C].CVPR2014,pp.1947-1954,in Columbus,Ohio,USA,June,2014.
  • 5Yong Xu,Hui Ji.Viewpoint invariant texture description using fractal analysis[J].Int.J Comput Vis,2009,83:85-100.
  • 6Yong Xu,Sibin Huang,Hui Ji.Scale-space texture description on SIFT-like textons[J].Computer vision and image understanding,2012,116:999-1013.
  • 7Donoho D.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 8Candes E,Wakin M.An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30.
  • 9Mahdi Cheraghchi,Venkatesan Guruswami,Ameya Velingker.Restricted isometry of fourier matrices and list decodability of random linear codes[J].Proceedings of the ACM-SIAM Symposium on Discrete Algorithms(SODA),2013.
  • 10Lu Gan.Block compressed sensing of natural images[C].//15 th Inter.Conf.on Digital Signal Proc.,2007.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部