5FREUND Y, ROBERT E S. A Short introduction to boosting[ J ]. Journal of Japanese Society for Artificial Intelligence, 1999, 14 (5) :771 -778.
6FABRIZIO S. Machine learning in automated text categorization [ J]. J of the ACM,2002,34( 1 ) :1 -47.
7LI Ling. Data complexity in machine learning and novel classification algorithms[ D ]. USA: California Institute of Technology,2006.
8Meehan S, Susan D, David H et al. A Bayesian approach to filtering Junk e-mail[J]. AAAI Workshop, 1998, 4(13): 55-62.
9Kma C, H1 C, Ht N. Bayesian online classifiers for text classification and filtering[C]// Proceedings of 25th ACM International Conference on Research and Development in Information Retrieval. New York: ACM, 2002: 97-104.
10Sudhakar V, Rao C M, Somayajula S P K. Bayesian spam filtering using statistical data compression[J]. International Journal of Computer Science and Information Security, 2011, 9(10): 157-159.
4Hastie T,Tibshirani R, Friedma J. The elements of statistical learn- ing: data mining, inference, and prediction. New York: Springer, 2008:68-73.
5Zou H, Hastie T. Regularization and variable selection via the elas- tic net. Journal of the Royal Statistical Society Series B, 2005: 301-320.
6Zhang Y D. Wang S H. Binary PSO with mutation operator for fea- ture selection using decision tree applied to spam detection. Knowl- edge-Based Systems, 2014 ;64 : 22-31.
7Lewis D. Feature selection and feature extraction for text categoriza- tion. Proceedings of a workshop held at Harriman, New York, 1992 : 23-26.