期刊文献+

基于失效概率的矩独立重要性测度的高效算法 被引量:13

An Efficient Method for Failure Probability-based Moment-independent Importance Measure
原文传递
导出
摘要 基于失效概率的矩独立重要性测度能够有效地分析输入变量不确定性对结构系统失效概率的影响程度。然而,相比于基于方差的重要性测度,目前很少有足够准确、高效的方法计算该重要性测度。基于此,提出了一种高效求解基于失效概率的矩独立重要性测度新算法。所提算法采用基于分数矩和高维模型替代的极大熵法来高效估计条件概率密度函数,进而求得条件失效概率,再采用三点估计法求得相应条件失效概率的方差,即基于失效概率的矩独立重要性测度。由于所提算法中极大熵法和三点估计法的优点直接被继承,因此所提方法能够在较少的模型计算量的前提下给出足够准确的计算结果。算例表明了本文所提方法相对已有计算方法的优势,体现了更好的工程适用性。 The failure probability-based moment-independent importance measure can well analyze the effect of input uncertainties on the failure probability of a structure or system.However,compared with the variance-based importance measure,there are few accurate and efficient methods for the computation of the moment-independent importance measure at present.In this context,a highly efficient method to compute the failure probability-based moment-independent importance measure is proposed.The proposed method estimates efficiently the conditional probability density function of the model output using the fractional moments and high-dimensional model representation-based maximum entropy method,thus the conditional failure probability can be easily obtained by integration.Finally the three-point estimation method is applied to computing the variance,namely the failure probability-based moment-independent importance measure.Since the advantages of the maximum entropy method and the three-point estimation method are inherited directly,the proposed method can yield accurate results under a small number of function evaluations.Examples in the paper demonstrate the advantages of the proposed method as compared with existing methods,and indicate its good prospect for engineering application.
出处 《航空学报》 EI CAS CSCD 北大核心 2014年第8期2199-2206,共8页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(51175425) 高等学校博士学科点专项科研基金(20116102110003)~~
关键词 矩独立重要性测度 极大熵 分数矩 高维模型替代 三点估计 moment-independent importance measure maximum entropy fractional moment high-dimensional model representation three-point estimation
  • 相关文献

参考文献2

二级参考文献18

  • 1陈建兵,李杰.结构随机响应概率密度演化分析的数论选点法[J].力学学报,2006,38(1):134-140. 被引量:41
  • 2Satelli A. Sensitivity analysis for importance assessment. Risk Analysis, 2002, 22(3): 579-590.
  • 3Helton J C, Davis F J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex sys- tems. Reliability Engineering and System Safety, 2003, 81(1) : 23-69.
  • 4Helton J C, Davis F J. Sampling-based methods. Saltelli A, Chan K, Scott E M. Sensitivity Analysis. New York: Wiley, 2000: 101-153.
  • 5Saltelli A, Marivoet J. Non-parametric statistics in sensi- tivity analysis for model output: a comparison of selected techniques. Reliability Engineering and System Safety, 1990, 28(2): 229-253.
  • 6Sobol I M. Global sensitivity indices for nonlinear mathe- matical models and their Monte Carlo estimates. Mathe matics and Computers in Simulation, 2001, 55(1-3) : 271- 280.
  • 7Iman R L, Hora S C. A robust measure of uncertainty im portance for use in fault tree system analysis. Risk Analy- sis, 1990, 10(3): 401-406.
  • 8Xu C, Gertner G. Uncertainty and sensitivity analysis for models with correlated parameters. Reliability Engineer- ing and System Safety, 2008, 93(6): 1563-1573.
  • 9Xu C, Gertner G. Extending a global sensitivity analysis technique to models with correlated parameters. Computa- tional Statistics : Data Analysis, 2007, 51 (12) : 5579- 5590.
  • 10Chun M H, Han S J, Tak N I. An uncertainty importance measure using a distance metric for the change in a cumu- lative distribution function. Reliability Engineering and System Safety, 2000, 70(3): 313-321.

共引文献46

同被引文献52

  • 1袁朝辉,崔华阳,侯晨光.民用飞机电液舵机故障树分析[J].机床与液压,2006,34(11):221-223. 被引量:9
  • 2CUI LiJie,Lü ZhenZhou & ZHAO XinPan School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China.Moment-independent importance measure of basic random variable and its probability density evolution solution[J].Science China(Technological Sciences),2010,53(4):1138-1145. 被引量:43
  • 3吕震宙,孙颉.General Response Surface Reliability Analysis for Fuzzy-Random Uncertainty both in Basic Variables and in State Variables[J].Chinese Journal of Aeronautics,2005,18(2):116-121. 被引量:3
  • 4ZIO E. Reliability engineering= Old problems and new challenges[J]. Reliability Engineering and System Safety, 2009, 94(2)= 125 141.
  • 5CASTILLO E, MINGUEZ R, CASTILLO C. Sensitivity analysis in optimization and reliability problems[J]. Relia- bility Engineering and System Safety, 2008, 93 (12): 1788-1800.
  • 6LU Z, SONG J, SONG S, et al. Reliability sensitivity by method of moments[J]. Applied Mathematical Modelling, 2010, 34(10): 2860-2871.
  • 7I,U Z, ZHOU C, SONG Z, et al. Subset simulation-based method for cumulative distribution function sensitivity of output response in random environment[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Jour- nal of Mechanical Engineering Science, 2012, 226 (11) : 2770-2790.
  • 8SALETLLI A. Sensitivity analysis for importance assess- ment[J]. Risk Analysis, 2002, 22(3): 3-18.
  • 9MCKAY M D. Nonparametric variance-based methods of assessing uncertainty importance[J]. Reliability Engineer- ing and System Safety, 1997, 57(3) : 267-279.
  • 10SOBOL I M. Global sensitivity indices for nonlinear math- ematical models and their Monte Carlo estimates I-J. Mathematics and Computers in Simulation, 2001, 55(1): 271-280.

引证文献13

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部