期刊文献+

基于模糊最大间距准则的人脸特征提取方法 被引量:4

Face Feature Extraction Method Based on Fuzzy Maximum Margin Criterion
下载PDF
导出
摘要 在最大间距准则算法中引入模糊化思想,提出了基于模糊最大间距准则(FMMC)的人脸识别算法。首先讨论图像对各个类别的隶属程度,并重新定义了类内和类间离散度矩阵;然后利用模糊最大间距准则得到最优投影变换矩阵;最后将原始训练样本数据投影到一个相对低维的特征空间,从而完成对训练样本数据的特征提取。在ORL和Yale标准人脸库上的实验结果表明,文中提出的模糊最大间距准则特征提取方法用于人脸识别具有较高的识别率。 A Fuzzy Maximum Margin Criterion on the basis of this idea of fuzzy is presented,which is introduced into Maximum Margin Criterion(MMC).Firstly,the image's membership degree is discussed for each class,and the corresponding scatter matrices are redefined.Then the fuzzy maximum margin criterion is used to get the optimal projection matrix.Finally,by using the optimal projection matrix,FMMC can transform the original sample data from original high-dimensional data space to a low-dimensional feature space and complete the feature extraction of the original sample data.Experimental results on ORL face database and Yale face database show that the proposed FMMC method for face recognition has high recognition rate.
作者 程国
出处 《计算机与数字工程》 2014年第8期1355-1359,共5页 Computer & Digital Engineering
基金 陕西省教育厅科研计划项目(编号:2013JK0597) 陕西省教育科学"十二五"规划2012年课题(编号:SGH12443) 商洛学院科研基金项目(编号:12SKY010) 商洛学院服务地方专项项目(编号:12SKY-FWDF011)资助
关键词 人脸识别 模糊最大间距准则 特征提取 face recognition fuzzy maximum margin criterion feature extraction
  • 相关文献

参考文献13

二级参考文献91

共引文献25

同被引文献34

  • 1Belhumcour P N, Hespanha J P, Kriegman D J. Eigenface vs fisherfaces: recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):711-720.
  • 2Swets D L, Weng J J. Using discriminant eigenfeature for image retrieval [-J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 831-836.
  • 3Li Haifeng, Jiang Tao, Zhang Keshu. Efficient and robust feature extraction by maximum margin criterion [J]. Transactions on Neural Networks, 2006, 17( 1 ) : 1157-1165.
  • 4Gulmezoglu M B, Dzhafarov V, Keskin M, et al. A novel approach to isolatedword recognition[J]. IEEE Transactions on Speech and Audio Processing, 1999, 7(6) : 620-628.
  • 5Gulmezoglu M B, Dzhafarov V, Barkana A. The common vector approch and its relation to principal component analysis [J]. IEEE Transactions on Speech and Audio Processing, 2001,9(6):655-662.
  • 6Cevikalp H, Neamtu M, Wilkes M, et al. Discriminative common vectors for face recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 (1) : 4-13.
  • 7Turk M, Pentland A . Face recognition using eigenfaces [ C ] // Pro-ceedings of IEEE Computer Society Cor^erence on Computer Visionand Pattern Recognition. Maui,Hawaii, USA : IEEE Comput SocPress, 1991:586 - 591.
  • 8Yang J,Zhang D, Yang J Y, et al. Globally maximizing, locallyminimizing: unsupervised discriminant projection with applicationsto face and plam biometrics [ j]. IEEE Trans Pattern Anal MachIntell, 2007,29(4) :650 - 664.
  • 9MartinezA M, Kak A C. PCA versus lDA[J]. IEEE Trans Pat-tern Anal Mach Intell,2001,23(2) :228 - 233.
  • 10liH F, Jiang T, Zhang K S. Efficient and robust feature extrac-tion by maximum margin criterion [ J]. IEEE Trans Neur Netw,2006,17(1):157-165.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部