摘要
利用PVT装置模拟高温高压下热采稠油乳状液的形成过程,并通过RS600流变仪及光学显微镜,测定了渤海脱水原油与模拟水在不同条件下所形成的原油乳状液的黏度及微观特性,考察了影响热采稠油乳状液稳定性的因素。结果表明,随实验温度、搅拌速率以及防膨剂浓度的增加,稠油与模拟水乳化所形成的原油乳状液黏度增加,水滴数量增加、粒径减小,所形成的原油乳状液稳定性增强,而多元热流体的加入使得原油乳状液黏度降低,但水相颗粒以更小的粒径分布得更均匀。这主要与温度增加及多元热流体的作用有关,稠油黏度降低,再加上剪切速率增加及稠油中的天然乳化剂共同作用,使得稠油容易与模拟水乳化,形成稳定的W/O型乳状液。
Formation of the heavy oil emulsion of thermal recovery was simulated by the PVT equipment. Viscosities and microscopic properties of crude oil emulsion made by Bohai dehydrated crude oil and simulating water were investigated with a rheometer RS600 and Olympus microscope BX41. Meanwhile, the effects of simulated conditions on the stability of emulsion were also studied in this thesis. The results indicate that viscosities of crude oil emulsions and densities of water particles increase with higher temperature, higher stirring velocity and more anti-swelling agents. However, smaller water particle size and lower viscosity of crude oil emulsions are obtained mainly because of the effect of multiple thermal fluid. The results show that the stability of W/O crude oil emulsion are increased with the increasing of temperature and stirring velocity, effecting of multiple thermal fluidand natural emulsifier in crude oil.
出处
《石油化工高等学校学报》
CAS
2014年第4期66-71,共6页
Journal of Petrochemical Universities
基金
国家重大科技专项资助项目(2011ZX05057-005-001)
关键词
稠油
多元热流体
乳状液
热采
Heavy oil
Multiple thermal fluid
Emulsion
Thermal recovery