期刊文献+

基于非负稀疏表示的SAR图像目标识别方法 被引量:11

SAR Image Target Recognition Based on Non-negative Sparse Representation
下载PDF
导出
摘要 针对合成孔径雷达(SAR)图像目标识别中存在物体遮挡的情况,该文提出一种基于非负稀疏表示的分类方法。通过分析L0范数和L1范数最小化在求解非负稀疏表示问题上的区别,证明在一定条件下,L1范数最小化方法除了保持解的稀疏性还能得到与输入信号更加相似的原子集合,因此也更加适用于分类问题中。在运动和静止目标获取与识别(MSTAR)数据集上的识别实验结果表明,采用L1范数的非负稀疏表示分类方法能达到较好的识别性能,并且相对传统方法对存在遮挡情况下的识别问题更稳健。 In order to solve the occlusion issue in SAR image target recognition, a new classification method is proposed based on non-negative sparse representation. The difference between L0-norm and Ll-norm minimization in solving non-negative sparse representation problem is analyzed, and it is proved that Ll-norm regularization method pursuits not only the sparsity of the solution but also the similarity between the input signal and the selected atoms under some conditions, hence it is fit for classification application. The experimental results on Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset show that the non-negative sparse representation classification method with Ll-norm regularization can achieve much better recognition performance and it is more robust in the recognition of targets with occlusion compared with the traditional method.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第9期2194-2200,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61271024 61201292 61201283) 新世纪优秀人才支持计划(NCET-09-0630) 全国优秀博士学位论文作者专项资金(FANEDD-201156) 国家部委基金 中央高校基本科研业务费专项资金资助课题
关键词 SAR目标识别 非负稀疏表示 L1范数最小化 SAR target recognition Non-negative sparse representation Ll-norm minimization
  • 相关文献

参考文献18

  • 1韩萍,吴仁彪,王兆华,王蕴红.基于KPCA准则的SAR目标特征提取与识别[J].电子与信息学报,2003,25(10):1297-1301. 被引量:54
  • 2Zhao Qun, Principe J C, et al.. Support vector machines for SAR automatic target recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 643-655.
  • 3Wright J, Yang A Y, et al.. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 4Zhang Hai-chao, Nasrabadic N M, Zhang Yan-ning, et al.. Joint dynamic sparse representation for multi-view face recognition[J]. Pattern Recognition, 2012, 45(4): 1290-1298.
  • 5Zhang Hai-chao, Nasrabadic N M, Zhang Yan-ning, et al.. Multi-view automatic target recognition using joint sparse representation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2481-2497.
  • 6Maurer A, Pontil M, and Romera-Paredes B. Sparse coding for multitask and transfer learning[C]. Proceedings of International Conference on Machine Learning, Atlanta, 2013 343-351.
  • 7Gu H T and Ward R K. Learning sparse representations for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(8): 1576-1588.
  • 8Mehta N and Gray A. Sparsity-based generalization bounds for predictive sparse coding[C]. Proceedings of International Conference on Machine Learning, Atlanta, 2013: 36-44.
  • 9Bach F, Mairal J, and Ponce J. Task-driven dictionary learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 791-804.
  • 10Elad M. Sparse and Redundant Representations: from Theory to Applications in Signal and Image Processing[M].New York: Springer, 2010: 34-35.

二级参考文献6

  • 1B SchSlkopf, A Smola, K R Miiller, Nonliilear component analysis as a kernel eigenvalue problem, Neural Computation, 1998, 10(5), 1299-1319.
  • 2V N Vapnik, Statistical learning theory, AT&T Research, London University, 1998.
  • 3E R Keydel, S W Lee, JT. Moore, MSTAR extended operating conditions, A Tutorial, SPIE,1996, 2757(3), 228-242.
  • 4Qun Zhao, DongXin Xu, J C Principe, Pose estimation of SAR automatic target recognition,Proceedings of hnage Understanding Workshop, Monterey, CA., 1998, 11,827-832.
  • 5T Ross, S Worrell,V Velten, J Mossing, M Bryant, Standard SAR ATR evaluation experiment using the MSTAR public release data set, SPIE, 1998, 3370(4), 566-573.
  • 6Qun Zhao, J C Principe, Support vector machine for SAR automatic target recognition, IEEE Trans on Aerospace and Electronic Systems, 2001, 37(2), 643-654.

共引文献53

同被引文献130

  • 1胡利平,刘宏伟,吴顺君.一种新的SAR图像目标识别预处理方法[J].西安电子科技大学学报,2007,34(5):733-737. 被引量:20
  • 2张贤达.矩阵分析与应用[M].北京:清华大学出版社,2013.
  • 3Wright J, Yang A Y. Robust face recognition via sparse repre- sentation[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009, 31 (2) :210 - 227.
  • 4Zhang H C, Nasrabadic N M, Zhang Y N, et al. Joint dynamic sparse representation for multi-view face recognition[J]. Pattern Recognition, 2012, 45 (4) :1290- 1298.
  • 5Zhang H C, Nasrabadic N M, Zhang Y N, et al. Multi view au- tomatic target recognition using joint sparse representation[J]. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (3) :2481 - 2497.
  • 6Aharon M, Elad M, Bruckstein A, et al. K SVD:an algorithm for designing overcomplete dictionaries for sparse representation [J]. IEEE Trans. on Signal Processing ,2006,54(11) :4311 - 4322.
  • 7Jiang Z L, Lin Z, Davis L S. Label consistent K-SVD:learning a discriminative dictionary for recognition[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2013,35(11) : 2651 - 2664.
  • 8Chao Y, David C. MSTAR 10-class classification and confuser and clutter reiection using SVRDM[C]//Proc. of the SPIE, 2006:624501 - 624514.
  • 9Ross T, Worrell S, Velten V, et al. Standard SAR ATR evalua tion experiments using the MSTAR public release data set[C]// Proc. of the Part of the SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery V, 1998:566-573.
  • 10Patel V, Nasraba N, and Chellappa R. Sparsity-motivated automatic target recognition[J]. Applied Optics, 2011, 50(10): 1425-1433.

引证文献11

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部