期刊文献+

考虑用户标注状态的标签推荐方法 被引量:1

Tag Recommendation Method Considering Users Tagging Status
下载PDF
导出
摘要 为进一步提升标签推荐的质量,提出一种考虑用户当前标注状态的标签推荐方法.首先根据统计分析方法发现社会标签系统中用户使用的标签总数随时间有一定的变化规律,因此提出当前用户标注状态可能属于下列3种情况之一:成长态、成熟态和休眠态,并给出相关定义.然后根据3种用户标注状态的不同特点,提出不同策略下计算标签的概率分布,为用户推荐最可能使用的标签.对比实验表明文中方法能提供更准确的推荐结果. To improve the quality of tag recommendation, a tag recommendation method considering users current tagging status is proposed. Firstly, the statistical analysis shows the total number of tags used by a user is changed with time in a social tagging system. Then, three tagging statuses are defined, i. e. the growing status, the mature status and the dormant status, and a user current tagging status is one of the above statuses. Finally, according to the characteristics of the current tagging status, different strategies are developed to compute the tag probability distribution to recommend tags to users. Results of comparative experiments show that the proposed method has better accuracy of tag recommendation.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第8期673-682,共10页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61379114 61272060) 重庆市自然科学基金项目(No.cstc2013jcyjA40063)资助
关键词 社会标签 标签推荐 标注状态 概率分布 Social Tagging Tag Recommendation Tagging Status Probability Distribution
  • 相关文献

参考文献16

  • 1Hamouda S, Wanas N M. PUT-Tag: Personalized User-Centric Tag Recommendation for Social Bookmarking Systems. Social Network Analysis and Mining, 2011, 1 (4) : 377-385.
  • 2Lu C M, Hu X H, Park J R, et al. Post-Based Collaborative Fil- tering for Personalized Tag Recommendation// Proc of the iConfe- rence. Seattle, USA, 2011:561-568.
  • 3Liu K P, Fang B X, Zhang W Z. Exploring Social Relations for Per- sonalized Tag Recommendation in Social Tagging Systems. IEICE Trans on Information and Systems, 2011, 94-D(3) : 542-551.
  • 4Jaschke R, Marinho L, Hotho A, et al. Tag Recommendations in Social Bookmarking Systems. AI Communications, 2008, 21 ( 4 ) : 231-247.
  • 5Kim H N, E1 Saddik A. Personalized PageRank Vectors for Tag Recommendations: Inside FolkRank // Proc of the 5th ACM Con- ference on Recommender Systems. Chicago, USA, 2011 : 45-52.
  • 6Kubatz M, Gedikli F, Jannach D. LocalRank- Neighborhood- Based, Fast Computation of Tag Recommendations//Proc of the 12th International Conference on E-commerce and Web Technolo- gies. Toulouse, France, 2011:258-269.
  • 7Ramezani M. Improving Graph-Based Approaches for Personalized Tag Recommendation. Journal of Emerging Technologies in Web In- telligence, 2011, 3(2): 168-176.
  • 8Krestel R, Fankhauser P. Personalized Topic-Based Tag Recommen- dation. Neurocomputing, 2012, 76(1 ): 61-70.
  • 9张斌,张引,高克宁,郭朋伟,孙达明.融合关系与内容分析的社会标签推荐[J].软件学报,2012,23(3):476-488. 被引量:42
  • 10Feng W, Wang J Y. Incorporating Heterogeneous Information for Personalized Tag Recommendation in Social Tagging Systems // Proc of the 18th ACM SIGKDD International Conference on Know- ledge Discovery and Data Mining. Beijing, China, 2012: 1276- 1284.

二级参考文献23

  • 1Guy M,Tonkin E.Folksonomies:Tidying up tags-D-Lib Magazine,2006,12(1).[doi:10.1045/january2006-guy].
  • 2Sigurbj-rnsson B,van Zwol R.Flickr tag recommendation based on collective knowledge.In:Huai JP,Chen R,Hon HW,Liu YH,Ma WY,Tomkins A,Zhang XD,eds.Proc.of the 17th Int’l Conf.on World Wide Web.New York:ACM,2008.327-336.[doi:10.1145/1367497.1367542].
  • 3Hotho A,J-schke R,Schmitz C,Stumme G.Information retrieval in folksonomies:Search and ranking.In:Sure Y,Domingue J,eds.Proc.of the Semantic Web:Research and Applications,3rd European Semantic Web Conf.Heidelberg:Springer-Verlag,2006.411-426.[doi:10.1007/11762256_31].
  • 4Symeonidis P,Nanopoulos A,Manolopoulos Y.A unified framework for providing recommendations in social tagging systemsbased on ternary semantic analysis.IEEE Trans.on Knowledge and Data Engineering,2010,22(2):179-192.[doi:10.1109/TKDE.2009.85].
  • 5Harvey M,Baillie M,Ruthven I,Carman M.Tripartite hidden topic models for personalised tag suggestion.In:Gurrin C,He YL,Kazai G,Kruschwitz U,Little S,Roelleke T,Rüger SM,van Rijsbergen K,eds.Advances in Information Retrieval,the 32ndEuropean Conf.on IR Research.Heidelberg:Springer-Verlag,2010.432-443.[doi:10.1007/978-3-642-12275-0_38].
  • 6Blei DM,Ng AY,Jordan MJ.Latent dirichlet allocation.Journal of Machine Learning Research,2003,3:993-1022.[doi:10.1162/jmlr.2003.3.4-5.993].
  • 7Hofmann T.Unsupervised learning by probabilistic latent semantic analysis.Machine Learning,2001,42(1/2):177-196.[doi:10.1023/A:1007617005950].
  • 8Banerjee A,Basu S.Topic models over text streams:a study of batch and online unsupervised learning.In:Proc.of the 2007 SIAMInt’l Conf.on Data Mining.Philadelphia:SIAM,2007.431-436.
  • 9Canini KR,Shi L,Griffiths TL.Online inference of topics with latent dirichlet allocation.In:van Dyk D,Welling M,eds.Proc.ofthe 12th Int’l Conf.on Artificial Intelligence and Statistics.Boston:MIT Press,2009.65-72.
  • 10R Development Core Team.R:A language and environment for statistical computing.Vienna:R Foundation for StatisticalComputing,2010.http://www.r-project.org/.

共引文献41

同被引文献3

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部