期刊文献+

n维模糊集的截集及其表示 被引量:1

The Cut Sets on n-dimensional Fuzzy Sets and Their Representations
原文传递
导出
摘要 在已有的n维模糊集和n维模糊集截集的概念基础上,发展出一种新的n维模糊集截集定义及其表示方法,并研究了n维模糊集截集的基本性质;同时结合模糊集的分解定理和表现定理,建立了n维模糊集的分解定理和表现定理。最后,应用该理论对n维模糊集的凸性问题进行了初步的研究和讨论。 Based on the previous concepts and the cuts of n-dimensional fuzzy sets, a new one of the cut sets on n-dimensional fuzzy sets and their representations are introduced, corresponding properties are studied. Meanwhile, the decomposition theorems and the representation theorems of the n-dimensional fuzzy sets are established by use corresponding theorems of the fuzzy sets. Finally, we discuss the convexity of the n-dimensional fuzzy sets.
出处 《模糊系统与数学》 CSCD 北大核心 2014年第3期97-102,共6页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(60971107)
关键词 模糊集 n维模糊集 截集 n维凸模糊集 Fuzzy Sets N-dimensional Fuzzy Sets Cut Sets N-dimensional Convex Fuzzy Sets
  • 相关文献

参考文献9

  • 1Shang Y G, Yuan X H, LEE E S. The n-dimensional fuzzy sets and Zadeh fuzzy sets based on the finite valued fuzzy sets[J]. Computers and Mathematics with Applications, 2010,60 : 442-463.
  • 2BedregalB, Beliakov G, Bustince H, Calvo T, Mesiar R, Paternain D. A class of fuzzy multisets with a fixed number of memberships[J]. Information Sciences, 2012,189 :1- 17.
  • 3张莲,商有光.n维模糊集的扩展原理及其性质[J].辽宁师范大学学报(自然科学版),2012,35(1):13-18. 被引量:1
  • 4张莲,商有光.n维模糊集的极小扩展原理[J].辽宁工业大学学报(自然科学版),2012,32(1):56-61. 被引量:1
  • 5胡洁萍,商有光,田益民.(s,t]-n维凸模糊锥[J].北京印刷学院学报,2011,19(2):64-67. 被引量:1
  • 6商有光,张成,夏尊铨.n维凸模糊集与n维模糊数[J].大连理工大学学报,2012,52(2):304-308. 被引量:2
  • 7商有光,张成.(∈,∈∨q)-n维凸模糊集[J].模糊系统与数学,2012,26(3):1-8. 被引量:2
  • 8Yuan X H, Li H X, Lee E S. Three new cut sets of fuzzy sets and new theories of fuzzy sets [J]. Computers and Mathematics with Applications, 2009,57 : 691 - 701.
  • 9罗承忠.模糊集引论(上)[M].北京:北京师范大学出版社,1991.

二级参考文献47

  • 1袁学海,李洪兴,孙凯彪.直觉模糊集和区间值模糊集的截集、分解定理和表现定理[J].中国科学(F辑:信息科学),2009,39(9):933-945. 被引量:36
  • 2翟建仁,何清,魏听仪.一般扩展原理[J].模糊系统与数学,1995,9(1):16-21. 被引量:6
  • 3赵宜宾,曾文艺,李洪兴.区间值模糊集合的扩展原理[J].北京师范大学学报(自然科学版),2007,43(1):1-5. 被引量:8
  • 4L A Zadeh. Fuzzy Sets [ J]. Inform and Control, 1965,8: 338 -353.
  • 5R Lowen. Convex Fuzzy Sets [ J]. Fuzzy Sets and Systems, 1980,3:291-310.
  • 6Xinmin Yang. Some properties of convex fuzzy sets[ J]. Fuzzy Sets and Systems, 1995,72 : 129-132.
  • 7Wang Guijun, Jiang Tao. A weakly equivalent condition of convex fuzzy sets [ J ]. Fuzzy Sets and Systems, 1998, 96: 385-387.
  • 8Xin Min Yang, Feng Mei Yang. A Property on convex fuzzy sets [J]. Fuzzy Sets and Systems, 2002,162:269-271.
  • 9Zhou Feiyue. The relative interiors of convex fuzzy sets under induced fuzzy topology[ J]. Fuzzy Sets and Systems, 1991,44: 109-125.
  • 10E E Ammar. Some properties of convex fuzzy sets and convex fuzzy cones[ J]. Fuzzy sets and systems, 1999,106:381-386.

共引文献3

同被引文献15

  • 1Turunen E. Mathematics behind fuzzy logic[M]. Physica-Verlag,1999.
  • 2Borzooei R A, Shoar S K, Ameri R. Some types of filters in MTL-algebras[J]. Fuzzy Sets Syst. , 2012,187 (1) : 92- 102.
  • 3Turunen E. Boolean deductive systems of BL-algebras[J]. Arch. Math. Logic, 2001,40 : 467-473.
  • 4Liu L Z, Li K T. Fuzzy Boolean and positive implicative filters of BL-algebras[J]. Fuzzy Sets Syst. ,2005,152:333 -348.
  • 5Liu L Z, Li K T. Boolean filters and positive implicative filters of residuated lattices[J]. Inform. Sci. , 2007,177:5725 -5738.
  • 6Zhu Y Q, Xu Y. On filter theory of residuated lattices[J]. Inform. Sei. , 2010,180: 3614-3632.
  • 7Xiao L, Liu L Z. A note on some filters in residuated lattiees[J]. Submitted:
  • 8Vita M. Fuzzy t-filters and their properties[J]. Fuzzy Sets Syst. ,2014,247:127- 134.
  • 9Ma Z M, Hu B Q. Characterizations and new subclasses of I-filters in residuated lattices [J]. Fuzzy Sets Syst. , 2014,247:92-107.
  • 10Shang Y G, Yuan X H, Lee E S. The n-dimensional fuzzy sets and Zadeh fuzzy sets based on the finite valued fuzzy sets [J]. Comput. Math. Appl. , 2010,60 : 442 - 463.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部