期刊文献+

基于改进的混合高斯模型的红外运动目标检测 被引量:2

Infrared Moving Object Detection Based on Improved Gaussian Mixture Model
下载PDF
导出
摘要 传统混合高斯模型中背景容易留下运动"虚影",同时在噪声或目标区域对比度低时会导致提取目标区域时出现断裂和空洞的现象,针对这些问题在混合高斯方法中赋予图像中运动和静止区域不同的背景更新速率,并充分利用混合高斯模型中的背景和前景信息,将背景减除的结果与高斯建模中的前景图像按照一定比例融合获得目标图像。实验结果表明:改进后的混合高斯模型运动目标检测方法,能够克服传统高斯模型目标检测中存在的问题,从复杂的背景中较完整的提取出运动目标,且具有一定的抗噪能力。 Traditional Gaussian mixture modeling is likely to cause motion artifact, while the noise or regions with low contrast will bring gaps or holes when extracting the targets. In view of above problems, this paper assigns different background updating rate to the motion and static regions, and make the most of the background and foreground information, and then the final results are fusion with Gaussian background subtraction and the foreground image from Gaussian mixture modeling with a certain proportion. The experimental results demonstrate that improved Gaussian mixture modeling for infrared moving targets detection can overcome problems existing in traditional algorithm. It could extract the moving object completely from complex backgrounds, and also has a good anti-noise capability.
出处 《红外技术》 CSCD 北大核心 2014年第8期628-632,共5页 Infrared Technology
基金 国家自然科学基金 编号:61272358 北京市工业波谱工程试验研究中心项目 编号:60977065 北京市重点学科建设项目 编号:00012007
关键词 红外视频序列 混合高斯模型 运动目标检测 infrared video sequence, Gaussian mixture model, moving target detection
  • 相关文献

参考文献14

  • 1崔金魁,宋旭,杨扬.视频监控中多运动目标的检测与跟踪[J].计算机应用与软件,2013,30(3):278-279. 被引量:4
  • 2胡德超,朱尤攀,罗琳,李泽民,范宏波,孙爱平,苏凡,韩娟.基于红外目标提取的夜视图像融合实时系统研究[J].红外技术,2014,36(2):125-130. 被引量:6
  • 3Kastek M, Madura H, Sosnowski T. Passive infrared detector for security systems design, algorithm of people detection and field tests result[J]. International Journal of Safety and Security Engineering, 2013, 3(1): 10-23.
  • 4Wirayuda, Tjokorda A B. Development methods for hybrid motion detection (frame difference-antomatic threshold)[C]//2013 International Conference of Information and Communication Technology, 2013: 218-222.
  • 5Tang Quan, Dai Shu Guang, Yang Jie. Object tracking algorithm based on camshifl combining background subtraction with three frame difference[J]. Applied Mechanics and Materials, 2013, 373(375):116-119.
  • 6裴巧娜.基于光流法的运动目标检测与跟踪技术[D].北京:北方工业大学,2007.
  • 7李丹,赵佳,周姗姗,周伟,王明阳.一种基于自适应背景划分的点目标检测算法[J].红外技术,2011,33(1):32-36. 被引量:3
  • 8Davis, J W, Sharma V. Background-subtraction using contour-based fusion of thermal and visible imagery[J]. Computer Vision and Image Understanding, 2007, 106(2-3): 162-182.
  • 9Aparna A, Nidhi K, Ripul G. background subtraction method for video sequences[J]. Infrared Physics Adaptive contour-based statistical moving target detection in infrared & Technology, 2013, 63: 103-109.
  • 10Li Ying-hong, Hart Hong-fang, Yah Zhang. An improved Gaussian mixture background model with real-time adjustment of learning rate[C]//2010 International Conference on Information Networking and Automation (ICINA), 2010:512-515.

二级参考文献33

共引文献121

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部