摘要
提出了一种用于检测全天空图像(ASI)序列中的弧状极光事件检测方法.针对弧状极光序列的运动趋势,在现有VLBP的基础上提出了基于空时极向LBP(ST-PVLBP)的极光序列事件检测算法,并用ST-PVLBP对极光序列进行表征.该算法结合序列帧间连续性信息和单帧空间位置信息,在保持高分类精度的同时降低了特征维数.在中国北极黄河站的ASI图像数据上的分类实验结果显示,所提出的方法可以有效检测全天空极光图像序列中的地磁南北向运动的弧状极光序列事件.
In this paper, a method for recognizing the arc aurora sequences from all-sky image sequences is proposed. For the movement trend of arc aurora sequences, a method named ST-PVLBP (spatial-temporal poleward volume local binary patterns), which is based on VLBP (volume local binary patterns) and uses ST-PVLBP to present the aurora sequences, is proposed. Combined with the interframe continuity information of the sequence and the spatial location information of the single frame, the algorithm reduces the feature dimension while maintaining high classification accuracy at the same time. The proposed method was evaluated using auroral observations at the Chinese Arctic Yellow River Station. Experimental results show that the proposed method can effectively detect the poleward moving arc aurora sequences.
出处
《软件学报》
EI
CSCD
北大核心
2014年第9期2172-2179,共8页
Journal of Software
基金
国家自然科学基金(41031064
60902082)
教育部留学回国人员科研启动基金
2010年海洋公益性行业科研专项经费(201005017)
陕西省自然科学基础研究计划(2011JQ8019)
中央高校基本科研业务费专项资金(K5051302008
K5051202048)
遥感科学国家重点实验室开放基金(OFSLRSS201415)
关键词
极光序列
空时结构
弧状极光
局部二值模式
aurora sequences
spatial-temporal structure
arc aurora
local binary patterns