期刊文献+

基于空时极向LBP的极光序列事件检测 被引量:1

Spatial-Temporal Poleward Volume Local Binary Patterns for Aurora Sequences Event Detection
下载PDF
导出
摘要 提出了一种用于检测全天空图像(ASI)序列中的弧状极光事件检测方法.针对弧状极光序列的运动趋势,在现有VLBP的基础上提出了基于空时极向LBP(ST-PVLBP)的极光序列事件检测算法,并用ST-PVLBP对极光序列进行表征.该算法结合序列帧间连续性信息和单帧空间位置信息,在保持高分类精度的同时降低了特征维数.在中国北极黄河站的ASI图像数据上的分类实验结果显示,所提出的方法可以有效检测全天空极光图像序列中的地磁南北向运动的弧状极光序列事件. In this paper, a method for recognizing the arc aurora sequences from all-sky image sequences is proposed. For the movement trend of arc aurora sequences, a method named ST-PVLBP (spatial-temporal poleward volume local binary patterns), which is based on VLBP (volume local binary patterns) and uses ST-PVLBP to present the aurora sequences, is proposed. Combined with the interframe continuity information of the sequence and the spatial location information of the single frame, the algorithm reduces the feature dimension while maintaining high classification accuracy at the same time. The proposed method was evaluated using auroral observations at the Chinese Arctic Yellow River Station. Experimental results show that the proposed method can effectively detect the poleward moving arc aurora sequences.
出处 《软件学报》 EI CSCD 北大核心 2014年第9期2172-2179,共8页 Journal of Software
基金 国家自然科学基金(41031064 60902082) 教育部留学回国人员科研启动基金 2010年海洋公益性行业科研专项经费(201005017) 陕西省自然科学基础研究计划(2011JQ8019) 中央高校基本科研业务费专项资金(K5051302008 K5051202048) 遥感科学国家重点实验室开放基金(OFSLRSS201415)
关键词 极光序列 空时结构 弧状极光 局部二值模式 aurora sequences spatial-temporal structure arc aurora local binary patterns
  • 相关文献

参考文献6

二级参考文献69

  • 1伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 2胡泽骏,杨惠根,艾勇,黄德宏,胡红桥,刘瑞源,田口真,陈卓天,綦欣,温艳波,刘嵘,王晶.日侧极光卵的可见光多波段观测特征——中国北极黄河站首次极光观测初步分析[J].极地研究,2005,17(2):107-114. 被引量:19
  • 3曹冲.戴维斯站的脉动极光出现率的日变化[J].电波科学学报,1986,1(4):7-14.
  • 4涂传治,日地空间物理学.下,1988年,33页
  • 5曹冲,电波科学学报,1986年,1卷,4期,7页
  • 6Stomer C. The Polar Aurora [M]. Oxford: Clarend on Press, 1955.
  • 7Syrjasuo M T, Donovan E F. Diurnal Auroral Occurrence Statistics Obtained via Machine Vision [J]. Annales Geophysicae, 2004, 22(4) :1103-1113.
  • 8Syrjasuo M T, Donovan E F, Qin X, et al. Automatic Classification of Auroral Images in Substorm Studies [C]//Proc Eight International Conference on Substorms (ICS8). Alberta: University of Calgary, 2007: 309-313.
  • 9Wang Y R, Gao X B, Fu R, et al. Dayside Corona Aurora Classification Based on X-gray Level Aura Matrices [C]// Proc ACM International Conference on Image and Video Retrieval (CIVR2010). Xi' an: Xidian University, 2010: 282- 287.
  • 10Pun C M, Lee M C. Log-Polar Wavelet Energy Signatures for Rotation and Scale Invariant Texture Classification [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(5): 590-603.

共引文献40

同被引文献20

  • 1Pedersen T R, Gerken E A. Creation of visible arti{ieial optical emission in the aurora by high power radio waves. Nature, g005, 433 (7025) : 498--500.
  • 2Hu Z J, Yang H, Huang D, et al. Synoptic distribution of dayside aurora: Multiple-wavelength albsky observation at Yellow River Station in Ny- Alesund, Svalbard. Journal of Atmospheric and Solar-terrestrial Physics, 2009,71 (89) : 794 -- 804.
  • 3Lorentzen D A, Moen J, Oksavik K, et al. In si- tumeasurement of a newly created polar cap patch. Journal of Geophysical Research, 2010, A12:115.
  • 4Zhang Q H,Zhang B C,Michael L,et al. Direct ob- servations of the evolution of polar cap ionization patches. Science, 2013,339 .. 1597-- 1600.
  • 5Syrjasuo M, Partamies N. Numeric image features for detection of aurora. Geoscience and Remote Sensing Letters, 2012,9 ( 2 ) : 176 -- 179.
  • 6王倩,梁继民,高新波等.基于表象特征的极光图形分类方法研究.第12届全国日地空间物理学术研讨会论文摘要集,2010,72(5):498-508.
  • 7Fu R, Li J, Gao X B, et al. Automatic aurora images classification algorithm based on separa- ted texture. In:Proceedings of IEEE International Conference on Robotics and Biomimetics. Guilin, China .- ISSN, 2009,1331 -- 1335.
  • 8Wang Y R,Gao X B,Fu R. Dayside corona aurora classification based on X-gray level aura matrices. In: Proceedings of the ACM Interna- tional Conference on Image and Video Retrieval. Xi'an : ACM, 2010,282 -- 287.
  • 9Han B, Zhao X, Tao D, et al. Dayside aurora classification via BIFs-based sparse representation using manifold learning. International Journal of Computer Mathematics, 2013,91 ( 11 ) : 2415 -- 2426.
  • 10Yang Q. Auroral events detection and analysis based on ASI and UVI images. Doctoral Dissertation. Xian : Xidian University, 2013.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部