摘要
研究了一类具有时变时滞和变采样周期的网络控制系统的稳定性问题.网络控制系统被建模为等效的具有输入时滞的系统,通过构造一个新的具有不连续项的Lyapunov泛函,给出了线性矩阵不等式作为使得闭环系统指数稳定的充分条件.通过求解这些线性矩阵不等式,可以找到一个常数作为采样时刻和输入更新时刻之间的上界,保证闭环系统的稳定性.数值仿真算例表明,该方法有效且相比已有文献局限性更小.
This article focuses on the stability of networked control systems( NCSs) with variable sampling and time delay. NCSs are modeled as an equivalent input delay system. By introducing a novel Lyapunov functional with discontinuities,linear matrix inequality( LMI) based sufficient conditions are derived for the exponential stability of the closed-loop system. By solving these LMIs,we can find a positive constant that determines an upper bound between a sampling instant and the subsequent input update instant,which guarantees the stability of the closed-loop system. Numerical simulation examples show that this method is efficient and less conservative than existing results in the literature.
出处
《北京科技大学学报》
EI
CAS
CSCD
北大核心
2014年第8期1123-1127,共5页
Journal of University of Science and Technology Beijing
关键词
网络控制系统
时滞
线性矩阵不等式
稳定性分析
networked control systems
delay
linear matrix inequalities(LMI)
stability analysis