摘要
是针对空气中PM2.5的相关因素分析、分布与演变及应急处理和空气质量控制管理的问题.首先,运用数理统计与分析的相关知识,建立PM2.5含量与5项指标间的相关性分析模型和多元线性回归方程模型,并采用SPSS软件和最小二乘法对其求解;然后,通过建立Shepard二维插值模型、多元线性回归方程模型以及偏微分方程模型研究了PM2.5时空分布、演变及预测评估的一般性规律;最后,引入效用函数建立了以满意度最大为目标的非线性规划模型和以投入总费用最少及PM2.5减排计划实施满意度最大为目标的多目标非线性规划模型,并结合LINGO软件求得最优解,给出了空气质量控制管理的治理计划.
In this paper, analysis of related factors, distribution evolution, emergency pro- cessing of PM2.5 as well as air quality control management are discussed. Firstly, use the mathematical statistics and analysis method to build the empirical analysis models and the multiple linear regression models which are for PM2.5 and the other five basic monitoring indexes. The SPSS software and least squares technique are applied to solve the above models. The next, Shepard 2-D interpolation model, multiple linear regression model and partial differential equation model are built to analysis the general rule about distribution evolution and predicted evaluate of PM2.5. Finally, utility functions method is quoted to build nonlinear programming model whose goal is the maximum satisfaction and multiobjective nonlinear programming models whose goals are the minimum total cost and maximum satisfaction of emission-reduction simultaneously. Combining the LINGO software, the optimal solution is obtained, thus the administer program of air quality control management can be proposed.
出处
《数学的实践与认识》
CSCD
北大核心
2014年第15期47-58,共12页
Mathematics in Practice and Theory
关键词
多元线性回归
Shepard插值
偏微分方程
效用函数
多目标非线性规划
multiple linear regression
Shepard interpolation
partial differential equation
utility functions
multi-objective nonlinear programming