期刊文献+

用户情境下基于信息增益和项目的协同过滤推荐技术研究 被引量:6

Study of Context- aware Recommendation Technology Based on Information Gain and Item- based Collaborative Filtering
下载PDF
导出
摘要 情境对于推荐系统的重要性已经得到了众多学者的普遍认可。然而在现有的基于情境感知的推荐中,基本上赋予所有情境因素的权重都是一样的,这种权重等分的做法很大程度上影响了推荐结果的质量。因此,提出了一种用户情境下基于信息增益和项目的协同过滤推荐技术,运用信息增益理论对诸多情境因素进行属性约简,计算不同情境属性的权重,抽取出对推荐结果影响较大的重要情境信息,将其与传统的基于项目的协同过滤推荐算法相结合,为处于特定情境下的用户提供个性化推荐。最后,通过实验证明该技术可以有效地提高推荐结果的准确率。 The importance of context in recommender systems has gained general recognition of the numerous scholars. However, in the existing context-aware recommendation, the weights of all the contextual factors are basically the same, which largely limits the quality of the recommended results. Therefore, this paper proposes a context-aware recommendation technology based on information gain and item-based collaborative filtering, applies the theory of information gain to reduce contextual factors, calculates the weights of different contex-tual attributes and extracts the significant contextual information that influences the recommended results greatly. The combination with the traditional item-based collaborative filtering algorithm provides appropriate items to specific users under particular contexts. Finally, the experiment shows that the proposed approach is helpful to improve the accuracy of recommended results.
作者 谭学清 何珊
出处 《情报杂志》 CSSCI 北大核心 2014年第7期165-170,共6页 Journal of Intelligence
关键词 个性化推荐 情境感知 信息增益 属性约简 协同过滤 personalized recommendation context-aware information gain attributes reduction collaborative filtering
  • 相关文献

参考文献15

  • 1Verbert K,Manouselis N, Ochoa X,et al. Context-aware Rec-ommender Systems for Learning : a Survey and Future Challen-ges[ J]. Learning Technologies, IEEE Transactions on, 2012,5(4):318-335.
  • 2Kim J, Lee D, Chung K Y. Item Recommendation Based on Context - aware Model for Personalized U - healthcare Service [J]. Multimedia Tools and Applications,2013:1-18.
  • 3Dao T H,Jeong S R,Ahn H. A Novel Recommendation Model of Location - based Advertising : Context - aware Collaborative Filtering Using GA approach[ J]. Expert Systems with Applications, 2012,39(3):3731-3739.
  • 4Baltrunas L, Ludwig B, Peer S, et al. Context Relevance Assessment and Exploitation in Mobile Recommender Systems[ J]. Personal and Ubiquitous Computing, 2012,16(5) : 507-526.
  • 5Majid A,Chen L,Chen G, et al. A Context-aware Personalized Travel Recommendation System Based on Geotagged Social Media Data Mining [ J]. International Journal of Geographical Information Science,2013,27(4) : 662-684.
  • 6Dey A K. Providing Architectural Support for Building Context-aware Applications [ D] . Georgia Institute of Technology, 2000.
  • 7Dey A K. Understanding and Using Context[J]. Personal and Ubiquitous Computing, 2001,5( 1) :4-7.
  • 8Pawlak Z. Rough Sets and Intelligent Data Analysis[ J]. Information Sciences,2002,147(1) :1-12.
  • 9贾平,代建华,潘云鹤,朱淼良.一种基于互信息增益率的新属性约简算法[J].浙江大学学报(工学版),2006,40(6):1041-1044. 被引量:29
  • 10Huang Z, Lu X, Duan H. Context-aware Recommendation U-sing Rough Set Model and Collaborative Filtering[ J]. Artificial Intelligence Review,2011,35(1) :85-99.

二级参考文献23

  • 1Dai Jian\|hua 1,2 , Li Yuan\|xiang 1,2 ,Liu Qun 3 1. State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei,China 2. School of Computer, Wuhan University, Wuhan 430072, Hubei, China 3. School of Computer Science,.A Hybrid Genetic Algorithm for Reduct of Attributes in Decision System Based on Rough Set Theory[J].Wuhan University Journal of Natural Sciences,2002,7(3):285-289. 被引量:6
  • 2Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 3Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 4Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 5Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 6Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 7Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 8Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 9Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 10Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.

共引文献585

同被引文献85

  • 1吴光远,何丕廉,曹桂宏,聂颂.基于向量空间模型的词共现研究及其在文本分类中的应用[J].计算机应用,2003,23(z1):138-140. 被引量:23
  • 2庄贵军,周南,李福安.情境因素对于顾客购买决策的影响(一个初步的研究)[J].数理统计与管理,2004,23(4):7-13. 被引量:21
  • 3Bobadilla J, Ortega F, Hernando A, et al. Recommender Systems Survey [ J ]. Knowledge-Based Systems, 2013 (46) :109-132.
  • 4Walter Carrer-Neto,Marta Luisa Hern6ndez-Alcaraz. Social knowledge-based recommender system. Application to the movies domain [ J ]. Expert Systems with Applications, 2012 ( 39 ) : 10990-11000.
  • 5Li Xin, Chert Hsinchun. Recommendation as link prediction in bipartite graphs: A graph kernel-based machine learning approach [ J]. Decision Support Systems, 2013 (54) :880-890.
  • 6Li D, Lv Q, Xie x, et al. Interest-based real-time content recommendation in online social communities [ J 1. Knowledge-Based Systems, 2012 ( 28 ) : 1-12.
  • 7Schall D. Who to follow recommendation in large-scale online development communities [ J ]. Information and Software Technology, 2014,56 ( 12 ) : 1543-1555.
  • 8Joel P Lucas,Nuno Luz. A hybrid recommendation approach for a tourism system [ J ]. Expert Systems with Applications, 2013(40) : 3532-3550.
  • 9Zhang Zi-Ke, Zhou Tao, Zhanga Yi-Cheng. Personalized recommendation via integrated diffusion on user item tag [J].Physica A ,2010(389) 179-186.
  • 10Zhang Z K,Zhou T,Zhang Y C. Personalized recommendation via integrated diffusion on user-item-tag tripartite graphs [ J ]. Physica A: Statistical Mechanics and its Applications ,2010, 389 ( 1 ) : 179-186.

引证文献6

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部