摘要
研究灰色离散性微分边界条件下的稳定性分析,灰色离散性对于许多数学模型具有很好的映射分析效果,而微分边界条件下的灰色离散性分析对于数学模型的稳定性具有很好的代表性,连续边界分析方法,推导出稳定性条件下的稳定误差分析结果,指导稳定性分析,并通过引理论证和推导方法,给出灰色离散性微分边界条件下的稳定性分析结果,并推导出稳定性的充分条件,为数学模型的稳定性分析提供指导。
The stability analysis in gray discrete differential boundary conditions was analyzed, the gray discrete mathemati-cal model had good mapping analysis for many actual models, while the gray discrete differential analysis under boundary conditions had good representation for the stability of the mathematical model in continuous boundary, the error analysis re-sults derived stable under the stability condition was studied, the guiding stability analysis was taken out, and by Lemma demonstration and derivation methods, the stability analysis results are given in gray discrete differential boundary condi-tions, and deduced sufficient condition for stability, which provide guidance for the stability analysis of mathematical mod-els.
出处
《科技通报》
北大核心
2014年第8期7-9,共3页
Bulletin of Science and Technology
基金
毕节学院科学研究基金项目"(院科合字20102005号)
贵州省教育厅自然科学研究项目(黔教科2010072)