期刊文献+

π-整环上形式幂级数的容度准则 被引量:2

Content Formulas for Power Series over π-Domains
下载PDF
导出
摘要 利用星型算子理论的相关方法,对Krull整环与π-整环进行了研究,给出了π-整环上形式幂级数的一些容度准则,证明了整环R是π-整环当且仅当对f,g∈R[[X]]*,都■h∈K[X]*,使得c(f)w=c(g)wc(h)w;当且仅当对f,g∈R[[X]]*,都■h∈K[X]*,使得c(f)t=c(g)tc(h)t;当且仅当对f∈R[X]*,g∈R[[X]]*,都■h∈K[X]*,使得c(f)w=c(g)wc(h)w;当且仅当对f∈R[X]*,g∈R[[X]]*,都■h∈K[X]*,使得c(f)t=c(g)tc(h)t. By utilizing the relevant methods of star operation theory, we study Krull domains and π-πdomains, and show some con- tent formulas for power series over π-domains. It is proved that an integral domain R is a π-πdomain if and only if for any f,g∈ R[[X] ] , there exists h ∈K[X] such that c(f) w = c(g)w c(h)w, if and only if for any f,g ∈ R[ [ X] ], there exists h ∈ K[X] such thatc(f),=c(g),c(h),, if and only if for anyf∈R[X],g∈R[[X]], there exists h∈K[X] such that c(f)w = c(g) wc(h) w, if and only if for anyf∈ R[ X] ,g ∈ R[ [X]], there exists h ∈K[ X] such that c(f)t = c(g)tc(h)t.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期451-454,共4页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11171240) 教育部博士点基金(20125134110002) 四川省教育厅自然科学重点基金(14ZB0035)资助项目
关键词 Krull整环π-整环 形式幂级数 容度 Krull domain or-domain power series content
  • 相关文献

参考文献25

  • 1Gilmer R. Multiplicative Ideal Theory[ M ]. New York:Marcel Dekker, 1972.
  • 2Anderson D D, Matijevic J. Graded 7r -rings[J]. Canad J Math,1979,31:449 -457.
  • 3Anderson D D. Globalization of some local properties in Krull domains[J]. Proc Am Math Soc,1982,85:141 -145.
  • 4Anderson D D, Anderson D F, narkanda R. The rings R(X) and R(X> [J]. J Algebra,1985,95:96 -115.
  • 5Malik S, Mott J L, Zafrullah M. On t- invertibility[ J]. Commun Algebra,1988,16:149- 170.
  • 6Houston E G, Zafrullah M. On t - invertibility II[ J ]. Commun Algebra, 1989,17 : 1955 - 1969.
  • 7Anderson D D, Zafrullah M. On t - invertibility III[ J ]. Commun Algebra, 1993,21 : 1189 - 1201.
  • 8Anderson D D, Kang B G. Content formulas for polynomials and power series and complete integral closure [ J ]. J Algebra, 1996, 181:82 -94.
  • 9Fontana M, Huckaba J A, Papick I J. Prtifer Domains[ M ]. New York:Marcel Dekker, 1997.
  • 10Wang F G. w- dimension of domains [ J]. Commun Algebra, 1999,27:2267 -2276.

二级参考文献44

  • 1王芳贵.PVMD与自反模[J].四川师范大学学报(自然科学版),2005,28(4):379-385. 被引量:12
  • 2Fang Gui WANG.On t-Dimension over Strong Mori Domains[J].Acta Mathematica Sinica,English Series,2006,22(1):131-138. 被引量:8
  • 3万吉湘,王芳贵.PTW整环的刻画[J].四川师范大学学报(自然科学版),2006,29(4):392-396. 被引量:4
  • 4Yin H. w-Modules over commutative rings [ D ]. Nanjing : Library of Nanjing University,2009.
  • 5Zhang J. Chain conditions of w-modules over a commutative ring with zero divisors[ D]. Chengdu : Library of Sichuan Normal University ,2009.
  • 6Wang F G, McCasland R L. On w-modules over strong Mori domains[ J]. Commun Algebra, 1997,25:1285 -1306.
  • 7Wang F G. w-Projective modules and w-flat modules [ J ]. Algebraic Colloquium, 1997,4:111 -120.
  • 8Kim H. Module-theoretic characterizations of t-linkative domains [ J ]. Commun Mgebra,2008,36 : 1649 - ! 670.
  • 9Kim H, Kim E S, Park Y S. Injective modules over strong Mori domains[J]. Houston J Math,2008,34:349 -360.
  • 10Wang F G. Commutative Rings and Theory of Star-Operations [ M ]. Beijing : Sicence Press ,2006.

共引文献36

同被引文献24

  • 1余柏林,汪明义.Π-凝聚环的推广[J].四川师范大学学报(自然科学版),2005,28(3):278-281. 被引量:9
  • 2徐龙玉,汪明义.关于零化子凝聚环[J].四川师范大学学报(自然科学版),2006,29(2):161-165. 被引量:10
  • 3易忠. 关于quasi-投射模和quasi-内射模[J]. 广西师范大学学报:自然科学版,1985,3(1):18-26.
  • 4GUPTA R N. On f-injective modules and semihereditary rings [ J]. Proc Nat Inst Sei, 1969,35 (1) :323 -328.
  • 5JAIN S. Flat and FP- injectivity[ J]. Proc Am Math Soc,1973,41 (2) :437 -442.
  • 6MAO L X, DING N Q. FP - projective dimensions[ J]. Commun Algebra,2005,33:1153 - 1170.
  • 7STENSTROM B. Coherent rings and FP - injective modules [ J ]. J London Math Soc, 1972,2:372 - 383.
  • 8NG H K. Finitely presented dimension of communicative rings and modules[ J]. Pacific J Math, 1984,113 (2) :25 -40.
  • 9ENOCHS E. A note on absolutely pure modules[ J]. Canad Math Bull, 1976,19(3) :361 -362.
  • 10GOODEARL R. Ring Theory : Nonsingular Rings and Modules [ M ]. New York : Springer - Verlag, 1976:78.

引证文献2

二级引证文献1

  • 1徐龙玉,胡葵,万吉湘,王芳贵.关于ZP-凝聚环[J].四川师范大学学报(自然科学版),2017,40(1):68-72.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部