期刊文献+

非线性相位误差补偿的反相条纹投影法 被引量:3

On the Inverse Phase Fringe Projection Profilometry with Nonlinear Phase Error Compensation
原文传递
导出
摘要 在理论分析伽马非线性引起相位误差的基础上,本文提出一种新的反相条纹投影形貌测量方法,能补偿条纹投影法中非线性误差的影响。若相机和投影仪存在二阶和三阶伽马非线性残余,会造成四步相移法产生四倍频的非线性相位误差。通过预先引入偏移相位π/4到四步相移法中,使其对应的非线性相位误差发生变号,这样偏移前后的测量相位相加即可补偿非线性误差的影响。针对四步相移法,仿真模拟和实验结果显示出非线性相位误差的频率始终是条纹频率四倍,验证了反相条纹投影方法的可行性和适用性,与常规方法相比,具有更高的测量精度。 A new inverse phase fringe projection profilometry method is proposed in this paper to compensate the nonlinear phase errors in fringe projection based on theoretical analysis of the phase error caused by gamma nonlinearity.The second-order and third-order gamma nonlinear residues existing in camera and projector system may cause nonlinear phase error with four times of fringe frequency in four-step phase shifting method.Through pre-introducing phase-offset π /4 into four-step phase shifting method,the corresponding nonlinear phase error inverses its sign,so that the nonlinear errors can be compensated by addition operation of the unwrapped phases before and after the phase-offset.For four-step phase shifting method,the simulation and experimental results show that nonlinear phase error frequency is always 4 times the fringe frequency,which verifies the feasibility and applicability of inverse phase fringe projection method.Comparing with conventional method,inverse phase method has higher measuring accuracy.
出处 《实验力学》 CSCD 北大核心 2014年第4期407-416,共10页 Journal of Experimental Mechanics
基金 国家自然科学基金(11172054) 国家重点基础研究发展973计划(2014CB046506) 中央高校基本科研业务费专项资金(DUT14LK11)
关键词 非线性相位误差补偿 反相法 条纹投影形貌测量 nonlinear phase error compensation inverse phase method fringe projection profilometry
  • 相关文献

参考文献27

  • 1Chen F, Brown G M, Song M. Overview of three dimensional shape measurement using optical methods [J]. Opt. Eng. , 2000, 39(1):10-22.
  • 2Zhang S, Yau S T. High-resolution real-time 3D absolute coordinate measurement based on a phase-shifting method [J].Opt. Express, 2006, 14(7):2644-2649.
  • 3Hu Q, Huang P S, Fu Q L, Chiang F B. Calibration of a 3-d shape measurement system [J]. Opt. Eng. , 2003, 42 (2) : 487- 493,.
  • 4李勇,苏显渝,吴庆阳.PMP系统中一种新的相位—高度映射算法[J].光电工程,2007,34(2):79-83. 被引量:11
  • 5唐燕,陈文静.应用神经网络的复杂物体三维测量[J].光学学报,2007,27(8):1435-1439. 被引量:18
  • 6吴庆阳,苏显渝,向立群,李勇.线结构光双传感器测量系统的标定方法[J].中国激光,2007,34(2):259-264. 被引量:33
  • 7Zhang S, Huang P S. Phase error compensation for a 3-D shape measurement system based on the phase-shifting method [J]. Optical Engineering, 2007, 46(6) :063601.
  • 8Schwider J, Dresel T, Manzke t:. Some considerations of reduction of reference phase error in phase-stepping interferometry[J]. Applied Optics, 1999, 38(4):655-659.
  • 9Joenathan C. Phase-measuring interferometry: new methods and error analysis [J]. Applied Optics, 1994, 33 (19) :4147-4155.
  • 10于起峰,陆宏伟,刘肖琳.基于数字图像的精密测量技术[M].北京:科学出版社,2002:56-57.

二级参考文献100

共引文献108

同被引文献18

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部